選擇題
2.已知\( x_1,x_2 \)是方程式\( x^2-(k-2)x+(k^2+3k+5)=0 \)的兩個實數根,則\( x_1^2+x_2^2 \)的最大值是多少?
(1)19 (2)18 (3)\( \displaystyle 5 \frac{5}{9} \) (4)\( -31 \) (5)不存在。
Suppose \( k \in R \) and \( \alpha,\beta \) are two real roots of the equation \( x^2-(k-2)x+(x^2+3x+5)=0 \),
then find the maximum value of \( \alpha^2+\beta^2 \).
連結已失效h ttp://www.artofproblemsolving.com/Forum/viewtopic.php?t=251904
95忠明高中,95文華高中,97大安高工,97全國高中聯招都考過這題
下次再看到這題時請把答案18直接填上去
---------------------------------------
102.3.25補充
已知\( x_1、x_2 \)是方程\( x^2-(k-2)x+(k^2+3x+5)=0 \)(k為實數)的兩個實數根,\( x_1^2+x_2^2 \)的最大值是(A)19,(B)18,(C)\( \displaystyle 5 \frac{5}{9} \),(D)不存在。請選擇一正確答案。
錯解
由根與係數之關係可知\( x_1+x_2=k-2 \),\( x_1 \times x_2=k^2+3k+5 \),
\( x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=(x_1+x_2)^2-2x_1x_2=(k-2)^2-2(k^2+3k+5)=k^2-4k+4-2k^2-6k-10=-k^2-10k-6=-(k+5)^2+19 \)。
由此可以得出當\( k=-5 \)時,\( x_1^2+x_2^2 \)的最大值是19,∴此題應該選擇(A)
剖析
本題主要考查學生一元二次方程部分的基本知識、根的判別式。根與係數之關係及函數的極值,從以上解法來看,解題過程和計算沒有錯誤,此題的錯誤在於忽視了題目中給出的一個條件,即\( x_1、x_2 \)是方程的兩個實數根,由於忽視了這個條件,因而無法確定k的取值範圍,造成了此題選擇的錯誤。
正確解法
∵ \( x_1、x_2 \)是方程的兩個實數根,∴\( \Delta \ge 0 \),即\( [-(k-2)]^2-4(k^2+3k+5)\ge 0 \),
又∵ \( [-(k-2)]^2-4(k^2+3k+5)=k^2-4k+4-4k^2-12k-20=-3k^2-16k-16 \),
∴ \( -3k^2-16k-16 \ge 0 \),即 \( 3k^2+16k+16 \le 0 \),
∴ \( \displaystyle -4 \le k \le -\frac{4}{3} \)。
由根與係數之關係可知\( x_1+x_2=k-2 \),\( x_1 \times x_2=k^2+3k+5 \),
∴ \( x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=(k-2)^2-2(k^2+3k+5)=k^2-4k+4-2k^2-6k-10=-k^2-10k-6=-(k+5)^2+19 \)。
由於\( x_1^2+x_2^2=-(k+5)^2+19 \)是k的一個二次函數,而且在\( \displaystyle -4 \le k \le -\frac{4}{3} \)範圍內是減函數,因此在\( k=-4 \)處取得最大值。
∴ \( x_1^2+x_2^2 \)的最大值是18,∴ 此題應該選擇(B)
(錯在哪裡?中學生解數學題常犯的錯誤分析P17,九章出版社)
---------------------------------------
5.設\( x_1,x_2,x_3,...,x_n \)均為整數且滿足:
(a)\( -1 \le x_i \le 2 \),\( i=1,2,3,...,n \),
(b)\( x_1+x_2+x_3+...+x_n=19 \),
(c)\( x_1^2+x_2^2+x_3^2+...+x_n^2=19 \)
令\( S=x_1^3+x_2^3+x_3^3+...+x_n^3 \),S的最大值和最小值分別為M,m,試問下列敘述哪些是正確的?
(1)m為質數 (2)M為7的倍數 (3)\( \displaystyle \frac{M}{m} \)為整數
(4)當S有最小值時,此級數中有30項為\( -1 \) (5)當S有最大值時,此級數中非0的項有42項
(2010年台灣區數甲第5次模擬考03.02 RA566.swf)
http://www.shiner.idv.tw/teachers/viewtopic.php?f=53&t=1582
99.8.21補充
設\( x_1,x_2,x_3,...,x_n \in \{\; -1,0,1,2 \}\; \)滿足
\( \displaystyle \cases{x_1+x_2+x_3+...x_n=19 \cr x_1^2+x_2^2+x_3^2+...+x_n^2=99} \),
求\( x_1^3+x_2^3+x_3^3+...+x_n^3 \)之最大值M與最小值m。
(中一中合作盃第25期)
99.10.20補充
設\( x_1,x_2,...,x_{2010} \)是整數,且滿足下列條件
(1)\( -1 \le x_n \le 2 \) ( \( n=1,2,...,2010 \) )
(2)\( x_1+x_2+...+x_{2010}=204 \)
(3)\( x_1^2+x_2^2+...+x_{2010}^2=2010 \)
試求\( x_1^3+x_2^3+...+x_{2010}^3 \)之最小值及最大值
(建中通訊解題第82期)
設\( a_1,a_2,...,a_{50} \)是從\( -1 \),0,1這三個整數中取值的數列。若\( a_1+a_2+...+a_{50}=9 \)且
\( (a_1+1)^2+(a_2+1)^2+...+(a_{50}+1)^2=107 \),則\( a_1,a_2,...,a_{50} \)當中有幾項是0?
(92學測)
從\( \{\; -1,3,11 \}\; \)中重複取出15個數\( a_1,a_2,...,a_{15} \)。已知\( a_1+a_2+...+a_{15}=41 \)且
\( (a_1+5)(a_2+5)...(a_{15}+5)=2^{42} \),則\( a_1^2+a_2^2+a_3^2+...+a_{15}^2= \)?
(2009TRML個人賽)
101.4.30補充
\( x_i \)為整數且\( -1 \le x_i \le 2 \),\( x_1+x_2+...+x_{2012}=19 \),\( x_1^2+x_2^2+...+x_{2012}^2=219 \),若\( x_1^3+x_2^3+...+x_{2012}^3 \)最大值為M,最小值為m,則數對\( (M,m) \)為何?
(101臺南二中,
https://math.pro/db/thread-1335-1-1.html)
\( X_1 \)、\( X_2 \)、\( X_3 \)…、\( X_{n-1} \)、\( X_n \)均為\( -1 \)或0或1或2,n為正整數,且滿足下列兩個等式:
\( X_1+X_2+X_3+...+X_{n-2}+X_{n-1}+X_n=91 \)
\( X_1^2+X_2^2+X_3^2+...+X_{n-2}^2+X_{n-1}^2+X_n^2=2002 \)
求\( X_1^3+X_2^3+...+X_{n-1}^3+X_n^3 \)之最大值、最小值
(建中通訊解題第22期)
101.6.19補充
設\( a_1 \),\( a_2 \),…,\( a_{50} \)是從-1,0,1,這三個整數中取値的數列。若\( a_1+a_2+…+a_{50}=9 \),且\( (a_1+1)^2+(a_2+1)^2+…+(a_{50}+1)^2=107 \),則\( a_1 \),\( a_2 \),…,\( a_{50} \)當中有幾項是0?
(101瑞芳高工,
https://math.pro/db/thread-1424-1-1.html)
填充題
18.已知\( x \ge 0 \),\( y \ge 0 \),\( z \ge 0 \)且\( 2x+y+z=4 \),若\( x+3y \le 5 \),則\( x+y \)的最大值為。
[提示]
\( z=4-2x-y \ge 0 \),當作\( x,y \)的線性規劃
計算題
20.已知圓內接四邊形ABCD中,\( \overline{AB}=3 \),\( \overline{BC}=5 \),\( \overline{CD}=8 \),\( \overline{DA}=5 \),而點P為四邊形ABCD內一點,
今設點P至\( \overline{AB} \)、\( \overline{BC} \)、\( \overline{CD} \)、\( \overline{DA} \)的距離分別為a、b、c、d,試求:
(1)四邊形ABCD的面積?
(2)\( a^2+b^2+c^2+d^2 \)的最小值為?
[提示]
(1)google 四邊形的面積
http://www.google.com.tw/search? ... 1&aql=&oq=&gs_rfai=
(2)柯西不等式
凸四邊形之四邊長為\( a,b,c,d \),令\( \displaystyle s=\frac{a+b+c+d}{2} \),A為一組對角和,試證該四邊形之面積為
\( \displaystyle \sqrt{(s-a)(s-b)(s-c)(s-d)-abcd cos^2 \frac{A}{2}} \)由此或用其他方法解下面問題:求周長為\( 2s \)的四邊形之中,面積最大的四邊形。
(94高中數學能力競賽 嘉義區筆試一試題)
連結已失效h ttp://www.math.nuk.edu.tw/senpengeu/HighSchool/2006_Taiwan_High_ChiaYi_01.pdf]http://www.math.nuk.edu.tw/senpe ... _High_ChiaYi_01.pdf