1.
\( (a+\sqrt{a^2+4})(b+\sqrt{b^2+9})=16 \),求\( a \sqrt{b^2+9}+b \sqrt{a^2+4} \)。
設\( (x+\sqrt{x^2+1})(y+\sqrt{y^2+4})=7 \),則\( x \sqrt{y^2+4}+y \sqrt{x^2+1} \)之值為何?
(建中通訊解題第66期)
110.2.11補充
設\(x,y\)為實數。已知\(y^2\ge 1\)且滿足\((\sqrt{1+x^2}-x)(y-\sqrt{y^2-1})=1\),試求\(x^2-y^2=\)
。
(109高中數學能力競賽 北二區複試筆試二,
https://math.pro/db/thread-3467-1-1.html)
113.4.29補充
已知實數\(x,y\)滿足\((x-\sqrt{x^2-2024})(y-\sqrt{y^2-2024})=2024\),則\(3x^2-2y^2+3x-3y-2023=\)?
(113鳳新高中,
https://math.pro/db/thread-3855-1-1.html)
5.
1,2,2,3,3,3,4,4,4.4.5....,若前n項和為\( S_n \),求\( \displaystyle \lim_{n \to \infty}\frac{S_n}{n \sqrt{n}} \)
數列:1,2,4,5,7,9,10,12,14,16,17,19,21,23,25,26,...,依此規則,若第n項為\( a_n \),求\( \displaystyle \lim_{n \to \infty}\frac{a_n}{n} \)。
(97國立大里高中)
11.
\( x,y,z \)為實數,已知\( x^2+y^2+z^2=6 \),\( x+y+z=4 \),求\( xyz \)的最大最小值?
[解答]
\( (x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx) \) , \( xy+yz+zx=5 \)
假設\( xyz=k \)
\( x,y,z \)為三次方程式\( t^3-4t^2+5t-k=0 \)的三實根
\( f(t)=t^3-4t^2+5t-k \),\( f'(t)=3t^2-8t+5=0 \) , \( \displaystyle t=\frac{5}{3},1 \)
\( \displaystyle f(\frac{5}{3})f(1)\le 0 \) , \( \displaystyle (\frac{50}{27}-k)(2-k)\le 0 \)
\( \displaystyle \frac{50}{27} \le k \le 2 \)
\( xyz \)最小值\( \displaystyle \frac{50}{27} \),最大值2
\( x,y,z \in R \),\( x+y+z=6 \),\( x^2+y^2+z^2=18 \),試求\( x^3+y^3+z^3 \)的最大值。
(100北一女)