發新話題
打印

103台中二中

回復 10# hua0127 的帖子

填2. 另解

選擇題 (Y) 對計算題 (X) 的迴歸直線方程為 \( y=\frac{8}{25}x+\frac{1156}{25} \)

而分數的關係式為 \( y_{i}=\frac{8}{25}x_{i}+\frac{1156}{25}+e_{i} \),其中 \( Cov(X,E)=0 \), \( Var(E)=(1-0.6^{2})Var(Y) \)
(紅字是重點,利用 \( Cov(Z+W)=Cov(Z,Z)+2Cov(Z,W)+Cov(W,W),Cov(Z,Z)=Var(Z), Cov(W,Z) = r_{z,w} \sigma_z\sigma_w \) 可證明之)

總分 \(X+Y:  x_{i}+y_{i}=\frac{33}{25}x_{i}+\frac{1156}{25}+e_{i} \)

\( Var(X+Y)=(\frac{33}{25})^{2}\cdot225+(1-\frac{9}{25})\cdot8^{2}=433 \),故標準差為 \( \sqrt{433} \)。

[ 本帖最後由 tsusy 於 2014-5-25 10:26 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 13# hua0127 的帖子

你的方法有你的方法的好處,親民易懂;我這樣寫,說不定有人覺得很詭異,跟天書一樣

我剛好記得那奇怪的式子,一般高一的課本或教師手冊很少把迴歸直線、相關係數談的這麼細

之前做教甄某題的時候,曾經重推一下這件事。

令我訝異的是,康熹版的高一課本,竟然那一段,用誤差來解釋相關係數:誤差的變異數,只有原變異數的 \( (1-r^2) \) 倍。

不過後來康熹好像又對課本做來修改,那段不知道還在不在?

紅字的另一個解釋,是線性代數正射影、正交分解的觀點,把 \( Cov(X,Y) \) 或 \( r \) 當作在處理內積、正射影係數,

正交分解完後,\( X \perp E \), \( E \) 的長度可用畢氏定理計算,翻譯回 Var, Cov 的語言,就是 \( Cov(X,E) = 0, Var(E) = (1-r^2) Var(Y) \)

[ 本帖最後由 tsusy 於 2014-5-25 10:53 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

無聊做一下,填充 1.

可分成(依序紅黃藍綠)奇奇奇奇、奇奇偶偶,轉換成方程式的非負整數解

\( (2x+1) + (2y+1) + (2z+2) + (2w+2) = 30 \) 或 \( (2x+1) + (2y+1) + (2z+1) + (2w+1) = 30 \)

\( \Rightarrow x+y+z+w = 12  or  13 \)

故所求 = \( H^4_{12} + H^4_{13} = 1015 \)
網頁方程式編輯 imatheq

TOP

回復 18# hua0127 的帖子

hua0127 的這個方法寫得更清楚、簡潔,雖然本質差不多

但是我的寫法,還繞一點不必要的路 \( Var(E) \),考試的時候記得要這樣做
網頁方程式編輯 imatheq

TOP

回復 29# David 的帖子

計算 2

1. 先證 \( \cos(\alpha-\beta)=-\frac{1}{2} \)

\( (\cos\alpha+\cos\beta)^{2}+(\sin\alpha+\sin\beta)^{2}=\cos^{2}\gamma+\sin^{2}\gamma \)

\( \Rightarrow2+2\cos(\alpha-\beta)=1\Rightarrow\cos(\alpha-\beta)=\frac{-1}{2} \)

2. 再證 \( \cos(\alpha+\beta)=-(\cos2\alpha+\cos2\beta) \)

\( \cos2\beta+\cos2\gamma=2\cos(\alpha+\beta)\cos(\alpha-\beta)=-\cos(\alpha+\beta) \) by 1

3. 證明 \( \cos2\alpha+\cos2\beta+\cos2\gamma=0 \)

\( (\cos\alpha+\cos\beta)^{2}-(\sin\alpha+\sin\beta)^{2}=\cos^{2}\gamma-\sin^{2}\gamma \)

\( \Rightarrow\cos2\alpha+\cos2\beta+2\cos(\alpha+\beta)=\cos2\gamma \)

\( \cos2\alpha+\cos2\beta+\cos2\gamma=0 \) by 2

4. 先證 \( \sin(\alpha+\beta)=-(\sin2\alpha+\sin2\beta) \)

\( \sin2\alpha+\sin2\beta=2\sin(\alpha+\beta)\cos(\alpha-\beta) \)

\( \Rightarrow\sin2\alpha+\sin2\beta=-\sin(\alpha+\beta) \) by 1

5. 證明 \( \sin2\alpha+\sin2\beta+\sin2\gamma =0 \)

\( \sin\gamma\cos\gamma=(\sin\alpha+\sin\beta)(\cos\alpha+\cos\beta) \) ,和差化積得

\( \Rightarrow\frac{1}{2}\sin2\gamma=2^{2}\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \)

\( \Rightarrow\frac{1}{2}\sin2\gamma=\sin(\alpha+\beta)\cdot(1+\cos(\alpha-\beta)) \)

\( \Rightarrow\sin2\alpha+\sin2\beta+\sin2\gamma \) by 1,4.

另證. 向量 \( (\cos\alpha, \sin\alpha), (\cos \beta, \sin \beta), (\cos \gamma. \sin \gamma) \) 頭尾相連形成一個三角形,故兩兩夾 \( 120^\circ \)。

不失一般性,可假設 \( \beta  = \alpha + 120^\circ \), \( \gamma = \alpha - 120^\circ \),代入,和角公式,即得證。

[ 本帖最後由 tsusy 於 2014-5-27 10:17 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

發新話題