發新話題
打印

102松山工農

印象中,一些教師手冊裡會提到,如果轉移矩陣的各元皆正或某次方後皆正,則必收斂至穩態。

不過這個定理,的確很難證,以前讀過隨機過程的時候,是用了另一個更大的定理 Perron–Frobenius theorem。

其內容為:一個 \( n \) 階實方陣 \( A \),若 \( A \) 的各元非負 (有時記作 \( A \geq 0 \) ) 且 \( A^k >0 \) (各元皆正)

則方陣 \( A \) 有一個特徵值 \( \lambda_{pf} \),滿足
1. 其它特徵值 \( \lambda \) 皆滿足 \( |\lambda| < \lambda_{pf} \)
2. \( \lambda_{pf} \) 的代數重數為 1
3. \( \lambda_{pf}>0 \) ,且其對應之特徵向量(左、右)之各元皆正

套在轉移矩陣上,就是說 \( \lambda_{pf} =1 \),且其特徵向量(穩態)各元皆正,其它特徵任之絕對值 \( <1 \)

對角化,計算 \( A^n \),即得每一行皆收斂至穩態。
網頁方程式編輯 imatheq

TOP

這件事讓我想到另一問題,也有同樣的結果

題. 已知 A 袋中有 3 個 10 元硬幣,B 袋中有 2 個 5 元硬幣,今從 A 袋任取一個硬幣放入 B 袋,再由 B 袋任取一個硬幣放入 A 袋。若進行的次數夠多,試問 A 袋中有 2 個 10 元硬幣和 1 個 5 元硬幣的機率會趨近何值?

答. \( \displaystyle \frac{3}{5} = \frac{C^3_2\cdot C^2_1}{C^5_3}\)。

這個答案同樣跟初始狀態無關,因為答案是穩態矩陣其中一元,而穩態只有轉移矩陣決定,與初始狀態無關。

有趣的是,即使我們稍微改一下玩戲規則,比如說,原本是先 A 後 B,我們可以改成先 B 後 A,或者一起拿出一個交換。

這時候,轉移矩陣改變了,但是仔細一做,會發現答案不變,穩態也不變。也就是說,在某類的交換規則下,穩態不只跟初始狀態無關,也跟交換規則無關!

但具體的限制條件是什麼?該怎麼描述,才夠充分?,又如何證明之!



寸絲的確是為了好玩在做數學的,即使是去年前年,在準備教甄的時候,也是這樣的態度。

這個問題也不是現在才思考,定理是讀書的時候學的,但後來也忘得差不多,只是依稀記得有這個定理在

準備考試時間,偶爾當當玩樂趣味,才查起了完整的定理名稱和條件,不過現在大概是證不出佩龍定理了吧
網頁方程式編輯 imatheq

TOP

回復 24# kittyyaya 的帖子

最後一行是錯的,  \( y\geq 2 \)  的翻譯是「 2 是 \( y \) 的一個下界

所以應該自問一下:下界、最小值有什麼差,為什麼算幾會有計算最小值的功能(或是如何利用算幾不等式)

類似的錯誤,或提問,在這網路上已是不知凡幾了

[ 本帖最後由 tsusy 於 2013-10-17 11:41 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 26# kittyyaya 的帖子

應該是若 \( y=2 \) 則 ... \( \sin 2x = \pm 2 \) (矛盾)

故 \( y \neq 2 \),因此達不到 2,所以2不是最小值。做到這,其實已經抓到學生錯的點了

2 是一個下界,字多一點的話:值域的下界,譯回符號就是「For all \( x \in \mathbb{R}\) (或 domain), \(2 \leq y\)」
網頁方程式編輯 imatheq

TOP

發新話題