第 19 題,我換個方法順帶畫個圖
如圖 \(\mathop {OA}\limits^ \rightharpoonup = - \mathop {OE}\limits^ \rightharpoonup = \mathop a\limits^ \rightharpoonup \), \(\mathop {FA}\limits^ \rightharpoonup = \mathop {ED}\limits^ \rightharpoonup = 2\mathop b\limits^ \rightharpoonup \), \(\mathop {GA}\limits^ \rightharpoonup = \mathop {HD}\limits^ \rightharpoonup = \mathop {FI}\limits^ \rightharpoonup = \mathop {EJ}\limits^ \rightharpoonup = 2\mathop c\limits^ \rightharpoonup \)
滿足\(|\alpha | \le 1\), \(|\alpha + \beta | \le 1\), \(\mathop {OP}\limits^ \rightharpoonup = \alpha \mathop a\limits^ \rightharpoonup + \beta \mathop b\limits^ \rightharpoonup \),點 P 所形成圖形為平行四邊形 \(ADEF\),其中 \(\overline {AD} ,\overline {EF} \) 滿足 \(\alpha + \beta = 1, - 1\),平行的四邊形內,與\(\overline {AD} \)平行的線段亦滿足 \(\alpha + \beta \) 為常數(在線段上為常數)。
又題意中,\(|\alpha + \beta + \gamma | \le 1\),因此 \( - (\alpha + \beta ) - 1 \le \gamma \le - (\alpha + \beta ) + 1\),故滿足題意之點 P 所形成的圖形為平行六面體 \(ADJI - GHEF\)
所求體積 \( = |\det \left( {\begin{array}{*{20}{c}}{\mathop {AD}\limits^ \rightharpoonup }&{\mathop {AI}\limits^ \rightharpoonup }&{\mathop {AG}\limits^ \rightharpoonup }\end{array}} \right)|\) \( = |\det \left( {\begin{array}{*{20}{c}}{ - 2\mathop a\limits^ \rightharpoonup + 2\mathop b\limits^ \rightharpoonup }&{-2\mathop b\limits^ \rightharpoonup + 2\mathop c\limits^ \rightharpoonup }&{ - 2\mathop c\limits^ \rightharpoonup }\end{array}} \right)|\) \( = 8|\det \left( {\begin{array}{*{20}{c}}{\mathop a\limits^ \rightharpoonup }&{\mathop b\limits^ \rightharpoonup }&{\mathop c\limits^ \rightharpoonup }\end{array}} \right)| = 48\)
註:以上向量,皆視作 \( 3 \times 1 \) 的矩陣
[
本帖最後由 tsusy 於 2021-4-25 21:52 編輯 ]