國立屏北高級中學 99 學年度第一次教師甄選(清華原住民教育實驗專班)
第 3 題:如下圖, \(\triangle ABC,\, \angle C=90^\circ,\, \overline{AD}=\overline{DE}=\overline{EB},\, \angle ACD=\alpha,\, \angle DCE=\beta,\, \angle ECD=\gamma\),
求 \(\displaystyle\frac{\sin\alpha\cdot\sin\gamma}{\sin\beta}=?\)
解答:
\(\displaystyle\frac{\sin\alpha\cdot\sin\gamma}{\sin\beta}\)
\(\displaystyle=\frac{1}{\displaystyle\frac{1}{2}\overline{AC}\cdot \overline{BC}}\cdot\frac{\displaystyle\frac{1}{2}\overline{CD}\cdot \overline{AC}\sin\alpha\cdot\frac{1}{2}\overline{CE}\cdot \overline{BC}\sin\gamma}{\displaystyle\frac{1}{2}\overline{CD}\cdot \overline{CE}\sin\beta}\)
\(\displaystyle=\frac{1}{\triangle ABC\mbox{面積}}\cdot\frac{\triangle ACD\mbox{面積}\cdot \triangle BCE\mbox{面積}}{\triangle CDE\mbox{面積}}\)
\(\displaystyle=\frac{1}{\triangle ABC\mbox{面積}}\cdot\frac{\displaystyle\frac{1}{3}\triangle ABC\mbox{面積}\cdot \frac{1}{3}\triangle ABC\mbox{面積}}{\displaystyle\frac{1}{3}\triangle ABC\mbox{面積}}\)
\(\displaystyle=\frac{1}{3}\)