\( (cos10^{\circ})^2+(cos50^{\circ})^2-(sin40^{\circ})(sin80^{\circ})= \)?
(1991中國高中數學聯賽)
[解答]
改計算\( (sin80^{\circ})^2+(sin40^{\circ})^2-(sin40^{\circ})(sin80^{\circ}) \)
可以看成半徑為\( \displaystyle \frac{1}{2} \)圓上的三角形ABC
\( ∠A=80^{\circ} \),\( ∠B=40^{\circ} \),\( ∠C=60^{\circ} \)
由正弦定理可知
\( \overline{BC}=sin80^{\circ} \),\( \overline{CA}=sin40^{\circ} \),\( \overline{AB}=sin60^{\circ} \)
由餘弦定理可知
\( \overline{AB}^2=\overline{BC}^2+\overline{CA}^2-2 \times \overline{BC} \times \overline{CA} \times cos60^{\circ} \)
\( \displaystyle (sin60^{\circ})^2=(sin80^{\circ})^2+(sin40^{\circ})^2-2 \times sin40^{\circ} \times sin80^{\circ} \times \frac{1}{2} \)
\( \displaystyle \frac{3}{4}=(sin80^{\circ})^2+(sin40^{\circ})^2-(sin40^{\circ})(sin80^{\circ}) \)
晚了一步
類似問題
114.4.29補充
化簡\(sin^2 54^{\circ}+sin^2 66^{\circ}-sin54^{\circ}sin66^{\circ}\)。
(96台北縣高中聯招,
https://math.pro/db/viewthread.php?tid=661&page=3#pid9233)
115.1.9補充
\(sin^2 18^{\circ}+sin^2 102^{\circ}-sin18^{\circ}sin102^{\circ}=\)
。
(101高中數學能力競賽 第二區(新店高中)筆試二試題,
https://math.pro/db/thread-1503-1-1.html)
114.5.30補充
計算\(sin^2 37^{\circ}+sin^2 8^{\circ}+\sqrt{2}sin37^{\circ}sin8^{\circ}\)之值。
(114蘭陽女中,
https://math.pro/db/viewthread.php?tid=3976&page=1#pid27201)
試問\(cos^2 80^{\circ}+cos^2 160^{\circ}+cos80^{\circ}cos160^{\circ}\)之值為下列何者?
(A)\(\displaystyle \frac{1}{4}\) (B)\(\displaystyle \frac{1}{2}\) (C)\(\displaystyle \frac{3}{4}\) (D)\(\displaystyle \frac{7}{8}\)
(114新北市國中聯招,thepiano解題
http://www.shiner.idv.tw/teachers/viewtopic.php?p=36601#p36601)