經sweeta314同意將題目轉錄到這裡
1.
有一隻老鼠要進入一個迷宮
迷宮共有abc三個入口
老鼠選擇入口的機率都相同 且老鼠不會記得他走過哪些門
若老鼠進入a門 則三小時後可走出迷宮
若老鼠走進b門 則兩小時後回到原地
若老鼠走進c門 則四小時後回到原地
求老鼠走出迷宮所需時間的期望值
[提示]
\( \displaystyle E(x)=\frac{1}{3}\times 3 +\frac{1}{3}\times (2+E(x))+\frac{1}{3} \times (4+E(x)) \)
補充一題
某一老鼠走迷宮的遊戲中,假設迷宮有A,B,C三個門,老鼠走進這三個門的機率都相等,且假設老鼠不去記憶走過。如果走進A門,則老鼠在3個小時後可以走出迷宮;如果走進B門,則老鼠經過2個小時後又走回原地;如果走進C門,則老鼠經過4個小時後又走回原地。那麼,這隻老鼠要走出迷宮所花時間的期望值為幾小時。
(97台灣師大推薦甄試)
迷宮入口處有向右、向左、向前三條路,其機率相同。若向右走,平均經過5分鐘,將回到入口處;若向左走,則平均經過8分鐘,就走出迷宮;若向前走,經過1分鐘後有左、右兩條路。向左和向右的機率相同下,向左走,平均經過6分鐘,就走出迷宮;而向右走經過2分鐘後,又回到入口處。平均而言,試問走一趟迷宮需多少時間?
(96桃園高中,93全國高中數學能力競賽南區筆試一)
108.5.11補充
小明在森林中迷了路,若繼續往前走則經過5分鐘後會回到原地,若返回走則有一半的機會於5分鐘後回到原地,另一半的機會於10分鐘後走出森林;假設小明向前走的機率為0.6,問小明能夠走出森林所花費的期望值為?
(A)25 (B)30 (C)40 (D)45 分鐘
(108全國高中聯招,
https://math.pro/db/thread-3132-1-1.html)
(113桃園高中,
https://math.pro/db/viewthread.php?tid=3852&page=1#pid25966)
112.6.5
動物學家以老鼠為實驗對象進行一項記憶實驗,測試其在迷宮中記憶行為。經實驗,已知老鼠從迷宮某處出發,該處僅能往左及往右兩個方向前進。若往左走則經過10分鐘後會回到原地,若往右走則有\(\displaystyle \frac{2}{3}\)的機率於5分鐘後回到原地,\(\displaystyle \frac{1}{3}\)的機率於15分鐘後走出迷宮;假設老鼠向左走的機率為0.4,問老鼠能夠走出迷宮所花費時間的期望值為
分鐘。
(112關西高中,
https://math.pro/db/viewthread.php?tid=3749&page=1#pid25126)
2010.5.6補充
一袋中有五顆球,三顆為2號球,兩顆為3號球。今從袋中取兩個球,若取出兩顆球點數相同就繼續,取出不同即停止。試求取出點數的期望值為何?
http://forum.nta.org.tw/examservice/showthread.php?t=48413
102.1.1
擲兩個公正骰子,若和為7可得100元,必可續投;若又擲點數和7可得100元,再續投,否則停止。求期望值?
2.
\( \displaystyle S_n=\frac{1}{n^2+1^2}+\frac{1}{n^2+2^2}+\frac{1}{n^2+3^2}+...+\frac{1}{n^2+n^2} \)
試求一實數a使得\( \displaystyle \frac{a}{n}-\frac{1}{2n^2}<S_n<\frac{a}{n} \)對所有n為正整數皆成立
3.
題目:給一個六次多項式\( f(x)=x^6-2x+1 \)(不確定有沒有記錯一次項跟常數項)求\( f(x) \)除以\( (x-1)^2 \)的餘式
試問這個題目 你要如何教以下三種學生?
(1)高一學生 (2)高二下學生 (3)高三理組學生
ps.去年考中山的時候有類似的題目
[提示]
(1)綜合除法 (2)二項式定理 (3)微積分
4.
若\( tanX=t \). 試用t表示\( tan(nX) \) 並證明你寫的是對的
[解答]
\( (cos(\theta)+i sin(\theta))^n=cos(n \theta)+i sin(n \theta) \)...(1)
\( (cos(-\theta)+i sin(-\theta))^n=cos(-n \theta)+i sin(-n \theta) \),
\( (cos(\theta)-i sin(\theta))^n=cos(n \theta)-i sin(n \theta) \)...(2)
從(1)(2)式得
\( \displaystyle sin(n \theta)=\frac{(cos(\theta)+i sin(\theta))^n-(cos(\theta)-i sin(\theta))^n}{2i} \)
\( \displaystyle cos(n \theta)=\frac{(cos(\theta)+i sin(\theta))^n+(cos(\theta)-i sin
(\theta))^n}{2} \)
兩式相除得
\( \displaystyle tan(n \theta)=\frac{1}{i} \frac{(cos(\theta)+i sin(\theta))^n-(cos(\theta)-i sin(\theta))^n}{(cos(\theta)+i sin(\theta))^n+(cos(\theta)-i sin(\theta))^n} \)
分子分母同除\( cos^{n}(\theta) \)
\( \displaystyle tan(n \theta)=\frac{1}{i}\cdot \frac{(1+i \cdot tan(\theta))^n-(1-i \cdot tan(\theta))^n}{(1+i \cdot tan(\theta))^n+(1-i \cdot tan(\theta))^n} \)
\( tan \theta \)換成t
\( \displaystyle tan(n \theta)=-i \cdot \frac{(1+i \cdot t)^n-(1-i \cdot t)^n}{(1+i \cdot t)^n+(1-i \cdot t)^n}=i \cdot \frac{(1-i \cdot t)^n-(1+i \cdot t)^n}{(1-i \cdot t)^n+(1+i \cdot t)^n} \)
5.
1 2 3 4 5 6 … 99 100
3 5 7 9 11 ……… 199
8 12 16 20 ………
20 28 36 ………
………………
…………
a
(說明 一個倒三角形,下一行的數字為上一行相鄰兩數的和)求a。
[提示]
從少數項觀察規律
a b c d e
a+b b+c c+d d+e
a+2b+c b+2c+d c+2d+e
a+3b+3c+d b+3c+3d+e
a+4b+6c+4d+e
\( \displaystyle C^4_0 \cdot a+C^4_1 \cdot b +C^4_2 \cdot c+C^4_3 \cdot d+C^4_4 \cdot e \)
將a,b,c,d,e換成1,2,3,4,5
\( \displaystyle C^4_0 \cdot 1+C^4_1 \cdot 2 +C^4_2 \cdot 3+C^4_3 \cdot 4+C^4_4 \cdot 5=\sum^{n}_{k=0} C^{n}_{k} \cdot (k+1) \),這裡的\( n=4 \)
101.10.10補充
下面一系列的圖形,隱藏了一些規則,即
(圖請看連結)
令在第1個圖、第2個圖、第3個圖、...、第n個圖中最下面一層的唯一數字分別為\( a_1 \)、\( a_2 \)、\( a_3 \)、...、\( a_n \)。如上圖,其中\( a_1=3 \),\( a_2=8 \),\( a_3=20 \)。則當\( n=2011 \)時,最下面一層唯一的數字\( a_{2011}= \)?
(100建國中學科學班甄選 數學能力測驗,連結已失效h ttp://www.ck.tp.edu.tw/~scicla/pdf/101/100math1.pdf)
2010.5.23補上ptt當初的討論文章
展開\( (0.2+0.8)^{100}=C_0^{100}(0.2)^0*(0.8)^100+C_1^{100}(0.2)^1*(0.8)^{99}+...+C_{100}^{100}(0.2)^0*(0.8)^{100} \)
依序令其為\( A_0 , A_1 , ... , A_{100} \), 共101項。
Q1. 請問\( A_1 ~ A_{100} \)中,何者最大?
Q2. 請問你如何向學生講解這件事情?