7.
恰有連續63個連續的自然數,其平方根的整數部分是相同的,則此整數值為=?
[解答]
我剛剛解出來了,把我的作法分享出來。
\([\sqrt{1}]=1,[\sqrt{2}]=1,[\sqrt{3}]=1\)
\([\sqrt{4}]=2,[\sqrt{5}]=2,[\sqrt{6}]=2,[\sqrt{7}]=2,[\sqrt{8}]=2\)
\([\sqrt{9}]=3,\ldots\)
所以由此觀察可知道
\(1^2=1,2^2=4,4-1=3\)個
\(2^2=4,3^2=9,9-4=5\)個
\(3^2=9,4^2=16,16-9=7\)個
\(\ldots\)
\(30^2=900,31^2=961,961-900=61\)個
\(31^2=961,32^2=1024,1024-961=63\)個
所以整數值為31