發新話題
打印

100全國高中聯招

回復 26# YAG 的帖子

妙招…

在下也玩了類似的方法

配方 \( (\beta-\alpha)^{2}=-3\alpha^{2}\Rightarrow|\alpha|=2 \)

硬分解 \( (\beta-\alpha+\sqrt{3}i\alpha)(\beta-\alpha-\sqrt{3}i\alpha)=0\Rightarrow|\beta|=2|\alpha|=4 \)

剩下來就是直角三角形面積。
網頁方程式編輯 imatheq

TOP

回復 33# man90244 的帖子

選擇10.
若\(\displaystyle \omega=cos40^{\circ}+isin40^{\circ}\)其中\(i=\sqrt{-1}\),則\(|\;\omega+2\omega^2+3\omega^3+\ldots+9\omega^3|\;^{-1}=\)
(A)\(\displaystyle \frac{1}{9}sin40^{\circ}\) (B)\(\displaystyle \frac{2}{9}sin20^{\circ}\) (C)\(\displaystyle \frac{1}{9}cos40^{\circ}\) (D)\(\displaystyle \frac{1}{18}cos20^{\circ}\)
[解答]
利用

\( \omega^{9}=1 \) 和 \( 1-\omega=1-\cos40^{\circ}-i\sin40^{\circ}=2\sin20^{\circ}(\sin20^{\circ}-i\cos20^{\circ}) \)

及 \(\displaystyle \omega+\omega^{2}\ldots+\omega^{9}=\frac{\omega^{10}-\omega}{\omega-1}=0 \)

化簡 10#  樓中式子,取絕對值。
網頁方程式編輯 imatheq

TOP

回復 36# 老王 的帖子

Ahlfors 的 Copmlex Analysis 嗎!?

這是令人罪惡的回憶…

真是厲害的方法,不過沒事的話,應該沒有會記得這個習題的性質吧

小弟再來補一個方法…

綜合 7
\(\alpha,\beta\)為兩複數,滿足\(\beta^2-2\alpha \beta+4\alpha^2=0\),且\(|\;\alpha-\beta|\;=2\sqrt{3}\),若\(\alpha,\beta\)在複數平面上所代表的點為\(A,B\),而\(O\)是複數平面的原點,則\(\Delta OAB\)的面積為   
[解答]
注意到題目所給的條件,和所求,都是旋轉不變的條件。

所以不妨旋轉一下,使得 \( \alpha-\beta \in R^+ \)

這樣絕對值,就可以直接拿掉,然後解出 \( \alpha,\, \beta \)

然後看要用什麼方法算面積都可以
網頁方程式編輯 imatheq

TOP

發新話題
最近訪問的版塊