發新話題
打印

101台中二中

回復 4# Yichen 的帖子

設兩變數\(X,Y\)的\(n\)組資料為\((x_i,y_i),i=1,2,\ldots,n\),且算術平均數分別為\(\overline{x}\)與\(\overline{y}\),利用最小平方法求得的迴歸直線為\(\hat{y}=a+bx\)。設變數\(\hat{Y}\)的資料為\(\hat{y}_i=a+bx_i\),變數\(E=Y-\hat{Y}\)的資料為\(e_i=y_i-\hat{y}_i\),試證:\(\displaystyle \sum_{i=1}^n e_i=\sum_{i=1}^n x_ie_i=\sum_{i=1}^n\hat{y}_ie_i=0\)。
[解答]
樓上好精采,小弟來補一下,偏微分做計算 5 的方法,以下的 \( \sum = \sum_{i=1}^n \)

令誤差平方和 \( SR(\alpha, \beta ) = \sum (y_i - \alpha - \beta x_i)^2 \)

其在 \( (\alpha, \beta )= (a,b) \) 有最小值,故 \( \nabla SR\mid_{(a,b)} = 0 \)

計算其在 \( (a,b) \) 處之偏微分, \( D_1SR(a,b) = \sum -2e_i \),  \( D_2SR(a,b) = \sum (-2e_i\cdot x_i) \)

故得 \( \sum e_i = \sum x_ie_i = 0 \),由兩線性組合得 \( \sum \hat y_ie_i =0 \)
網頁方程式編輯 imatheq

TOP

回復 6# hugo964 的帖子

7.
給定空間中6點,其中任四點不共面,則至多有   個相異的平面恰與其中四點等距。
[解答]
考慮該平面兩邊點數為 (2, 2) (1, 3) 兩種情況

點固定,就像算歪斜線距離的方式,平面的法向量就被固定,移動平面恰有一個。

所以有 \( \frac{C^4_2}{2} + C^3_1 = 7 \)
網頁方程式編輯 imatheq

TOP

回復 8# kittyyaya 的帖子

公切線,所以兩函數在兩切點的微分值相同,可得 t 的關係
網頁方程式編輯 imatheq

TOP

發新話題
最近訪問的版塊