引用:
原帖由 nanpolend 於 2011-5-3 07:35 PM 發表 
第12題填充
limit[(1^5+3^5+...+(2n-1)^5)/n^6]
=limit[(1^5+2^5+...+(2n)^5)/n^6-(2^5+4^5+...+(2n)^5)/n^6]
limit[(1^5+2^5+...+(2n)^5)/n^6]
=∫[0..2]x^5dx
=32/3
limit[(2^5+4^5+...+(2n)^5)/n^6]
∫[0..1](2x) ...
我一開始的想法也是用先加再減的想法
不過這題其實可以直接做(老王的做法)
lim[(1^5+3^5+...+(2n-1)^5)/n^6]
=(1/2) lim (2/n){(1/n)^5+(3/n)^5+...+[(2n-1)/n]^5}
=(1/2) ∫ [0 to2] x^5dx (考慮0到2分n等分, 每等分長2/n, 取每一等分中點的函數值)
=(1/2) (32/3)
=16/3
[
本帖最後由 Fermat 於 2011-5-3 10:50 PM 編輯 ]