發新話題
打印

99全國高中聯招

補一下
第3題
設有一球,其表面積以每秒1平方公分的變化率增加,則在半徑為3公分時,其體積的瞬間增加率為每秒多少立方公分?
(A)\(\displaystyle \frac{1}{2}\) (B)\(\displaystyle \frac{3}{2}\) (C)2 (D)\(\displaystyle \frac{8}{3}\)
[解答]
\(\displaystyle  A=4\pi r^2,\Rightarrow dA=8\pi rdr, \frac{dA}{dt}=8\pi r\frac{dr}{dt} \)

\(\displaystyle  \frac{dr}{dt}=\frac{1}{8\pi r} \)

\(\displaystyle  \frac{dV}{dt}=A\times\frac{dr}{dt}=\frac{36\pi}{24\pi}=\frac{3}{2} \)


第5題
小明上樓梯時可能一步上一階或一步上兩階,但不會連續兩步都上兩階。今小明走一個12階的樓梯,則上樓梯的方式共有
(A)88 (B)89 (C)90 (D)91
[解答]
98高中競賽嘉義區(二)第六題
我是用遞迴
走上n階分成
先走一階,有\( a_{n-1} \)種
先走兩階,必然要再走一階,所以有\( a_{n-3} \)種
也就是\( a_n=a_{n-1}+a_{n-3} \)
就1,2,3,4,6,9,13,19,28,41,60,88


第10題
\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{k}{n^2+k^2}=\)
(A)\(ln(\sqrt{2}+1)\) (B)\(ln2\) (C)\(\displaystyle \frac{\pi}{4}\) (D)\(\displaystyle \frac{1}{2}ln2\)
[解答]
\(\displaystyle \frac{k}{n^2+k^2}=\frac{1}{n}\times \frac{\frac{k}{n}}{1+(\frac{k}{n})^2} \)


填充二
空間中一四面體的四頂點分別為\(A(0,0,1)\),\(B(2,4,0)\),\(C(0,0,0)\),\(D(4,2,0)\),平面\(E\)將此四面體分成兩塊,其中一塊的體積為原四面體的\(\displaystyle \frac{1}{3}\),則\(E\)的方程式   

應該少了"過A點"這個條件。
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

計算第二題
設\(\alpha\)與\(\beta\)是相異兩實數,並且\(\alpha>\beta>0\)。定義數列\(\langle\;a_n\rangle\;\)如下:
\(a_1=\alpha+\beta\);當\(n\ge 2\)時,\(\displaystyle a_n=\alpha+\beta-\frac{\alpha\beta}{a_{n-1}}\)
(1)試證:\(\displaystyle a_n=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha^n-\beta^n}\)
(2)求\(\displaystyle \lim_{n\to \infty}a_n=\)?
[解答]
說真的,我們會解的遞迴數列太少,而解法又很不相同;這跟解微分方程有些類似。
高中競賽教程P317

令\(\displaystyle a_n=\frac{p_n}{q_n} \)

\(\displaystyle \frac{p_n}{q_n}=\frac{(\alpha +\beta )p_{n-1}-\alpha \beta q_{n-1}}{p_{n-1}} \)

\(\displaystyle p_n=(\alpha +\beta )p_{n-1}-\alpha \beta q_{n-1} \)

\(\displaystyle q_n=p_{n-1} \)
                              
由第二式知道\(\displaystyle q_{n-1}=p_{n-2} \)

代入第一式得到\(\displaystyle p_n=(\alpha +\beta )p_{n-1}-\alpha \beta p_{n-2} \)

於是解這個二階遞迴數列得到\(\displaystyle p_n=c_1\alpha^n+c_2\beta^n \)

代入初始條件\(\displaystyle p_1=\alpha +\beta ;p_2=\alpha^2+\alpha \beta+\beta^2 \)

解得\(\displaystyle c_1=\frac{\alpha}{\alpha -\beta} ; c_2=\frac{-\beta}{\alpha -\beta} \)

結論就出現了
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

發新話題