第24題
如右圖,\(H\)為\(\triangle ABC\)之垂心,\(\overline{BC}=a,\overline{AC}=b,\overline{AB}=c\),若面積比\(\triangle ABH:\triangle BCH:\triangle ACH=1:2:3\),則邊長比\(a:b:c=\) 。
[解答]
\(\displaystyle \Delta BCH:\Delta ACH:\Delta ABH=\tan A:\tan B:\tan C=2:3:1 \)
設 \(\displaystyle \tan A=2k, \tan B=3k, \tan C=k \)
又 \(\displaystyle A+B+C=\pi \)
所以 \(\displaystyle \tan A+\tan B+\tan C=(\tan A)(\tan B)(\tan C) \)
\(\displaystyle 6k=6k^3 \)
\(\displaystyle k=1 \)
\(\displaystyle \tan A=2, \tan B=3, \tan C=1 \)
\(\displaystyle \sin A=\frac{2}{\sqrt5}, \sin B=\frac{3}{\sqrt{10}}, \sin C=\frac{1}{\sqrt2} \)
\(\displaystyle a:b:c=2\sqrt2:3:\sqrt5 \)