計算
(1) 因為\(\displaystyle \overline{OA}=\overline{OB}=40,\overline{OC}=\overline{OD}=36\)
且\(\angle{AOC}=\angle{BOD}=\theta\)
故\(\displaystyle \triangle{AOC}\cong \triangle{BOD} (SAS)\)
(2)\(\overline{BC}^2+\overline{AC}^2=\overline{BC}^2+\overline{BD}^2=\overline{CD}^2\)
在\(\triangle{COD}\)中,\(\overline{CD}^2=36^2+36^2-2\times 36^2 \times cos\angle{AOB}=324\)