選擇10.
若\(\displaystyle \omega=cos40^{\circ}+isin40^{\circ}\)其中\(i=\sqrt{-1}\),則\(|\;\omega+2\omega^2+3\omega^3+\ldots+9\omega^3|\;^{-1}=\)
(A)\(\displaystyle \frac{1}{9}sin40^{\circ}\) (B)\(\displaystyle \frac{2}{9}sin20^{\circ}\) (C)\(\displaystyle \frac{1}{9}cos40^{\circ}\) (D)\(\displaystyle \frac{1}{18}cos20^{\circ}\)
[解答]
w^9=1=>1+w+w^2+....+w^8=0
上面等於w+w^2+...+w^9-9w^10=-9w^10 取絕對值
下面1-w取絕對值後=>2(1-cos40度)=2[2(sin^2)20度]
化簡一下就出來了