發新話題
打印

113高雄市高中聯招

回覆 13# jerryborg123 的帖子

(解一)
由\( x+y+z=3 \)可得\(  x+y=3-z \),是故目標函數可改寫為\(  x+y-2z=3-3z \),因此專注在\( z \)的最大最小值上。
再來就老梗了,移項->柯西不等式->多項式不等式。
由\(  x+y=3-z、x^2+y^2=9-z^2 \)可得\(  (x^2+y^2)(1^2+1^2) \ge (x+y)^2 \),因此\(  (9-z^2)(2) \ge (3-z)^2 \)
化簡得 \( 0 \ge z^2-2z-3\),即\(  0\ge (z+1)(z-3) \),故z的最大值為3,最小值-1,因此所求最大值為6,最小值為-6

(解二) Lagrange multiplier
定義 \[  \nabla f=(\partial_x f,\partial_y f,\partial_z f) \]。
設\(  f(x,y,z)=x+y+z-3、g(x,y,z)=x^2+y^2+z^2-9、h(x,y,z)=x+y-2z \)。因為h函數的極值會發生在邊界上,所以我們會有\( \nabla h=\alpha \nabla f+ \beta \nabla g\)
可以得到\[ \left\{
  \begin{array}{c}
    \alpha+2\beta x=1 \\
    \alpha+2\beta y=1\\
    \alpha+2\beta z=-2
  \end{array}
\right.\]
三式相加再搭配邊界條件\( x+y+z=3 \),可得\( 0=3\alpha +2\beta (x+y+z) \),即\(  \alpha=-2\beta \),是故
\[ x=\frac{\alpha-1}{\alpha}、y=\frac{\alpha-1}{\alpha}、z=\frac{\alpha+2}{\alpha} \]
代入另一個邊界條件\( x^2+y^2+z^2=9 \),(計算過程懶得打了),可得\( \alpha = 1 or -1\)。
當 \( \alpha=1 \) 時\(x=0,y=0,z=3 \),目標函數有最小值 \( h(0,0,3)=-6 \)。
當 \( \alpha=-1 \) 時\(x=2,y=2,z=-1 \),目標函數有最大值 \( h(2,2,-1)=6 \)。

TOP

回覆 16# jerryborg123 的帖子

你的做法有點像線性規劃的平行線法,極值會出現在邊界上。
不過在空間裡面,可能要有十足的想像力才有辦法解出了,而且還要想怎麼在答案卷上呈現,
迫於時間壓力不大可能選這條路。

回橢圓大大,我只是想多列幾種方法供大家欣賞,考試時通常時間緊迫,能解出來的都是好方法。
至於會不會給分?真是好問題,我也不知道,哈哈哈...
但是就我寫過的考古題,蠻常出現微積分或線性代數的。

TOP

第10題
一座標平面上,\(O\)為原點,點\(A_1\)、\(A_2\)在正向\(x\)軸上,點\(B_1\)、\(B_2\)在正向\(y\)軸上,\(\overline{A_1B_1}=\overline{A_2B_2}=26\),\(\angle B_2A_2O=2\angle B_1A_1O\),且\(\triangle B_2A_2O\)的面積為120,則\(\triangle B_1A_1O\)的面積為多少   
[解答]
先國中解法算出\( \Delta B_2A_2O \)的底跟高,再用三角函數定義及sin兩倍角求\( \Delta B_1A_1O \)面積。
設\( B_2O=a、A_2O=b \),由題意可得\( a^2+b^2=676、ab=240 \),將\( a=\frac{240}{b}\)代入第一式可推得\(b^4-676b^2+240^2=0 \)
即\( (b^2-100)(b^2-576)=0\),故 b=10 or 24。

設\( \angle B_1A_1O=\theta\),則\( \angle B_2A_2O=2\theta\),因\( \Delta B_2A_2O \)的(底,高)可能為(10,24) 及(24,10),
故\( sin 2\theta=\frac{10}{26} 或 \frac{24}{26} \)。

綜上,因為 \(\displaystyle \Delta B_1A_1O =\frac{1}{2}*B_1O*A_1O =0.5*26cos\theta*26sin\theta=169*sin2\theta\),故所求面積可能為156或65。

TOP

回覆 8# peter0210 的帖子

16.
箱中有編號1號到7號的7顆大小相同的球,每次從箱中任取一球,再放回箱中,重複取球\(n\)次,並記錄這\(n\)次取球的數字總和為\(S_n\),假設\(S_n\)除以3餘1的機率為\(P_n\),試求出\(P_n\)(以\(n\)表示)   
[解答]
這解法實在漂亮,不過蠻跳的,要花點文字解釋不然很難讀懂,以下提供一個比較直觀的解法。
策略是要列遞迴式,作成轉移矩陣後觀察前幾項應該會發現規律,就可以寫答案了,有時間可以再用數學歸納法證明。
設\( p_n\)為\(S_n\)除以3餘1的機率,\( q_n\)為\(S_n\)除以3餘2的機率,\( r_n\)為\(S_n\)除以3餘0的機率。易知\(\displaystyle p_1=\frac{3}{7}、q_1=\frac{2}{7}、r_1=\frac{2}{7}\)。\[ 設 X_n=\left[\begin{matrix} p_n \\ q_n \\ r_n  \end{matrix}\right]  ,由題意可得X_n=\left[\begin{matrix} p_n \\ q_n \\ r_n  \end{matrix}\right] = \left[\begin{matrix} \frac{2}{7} & \frac{2}{7} & \frac{3}{7}  \\ \frac{3}{7} & \frac{2}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{2}{7}  \end{matrix}\right] \left[\begin{matrix} p_{n-1} \\ q_{n-1} \\ r_{n-1}  \end{matrix}\right] ,X_1=\left[\begin{matrix} \frac{3}{7} \\ \frac{2}{7} \\ \frac{2}{7} \end{matrix}\right] \]
小心計算後,可得
\[ X_1=\left[\begin{matrix} \frac{3}{7} \\ \frac{2}{7} \\ \frac{2}{7} \end{matrix}\right] 、X_2=\left[\begin{matrix} \frac{16}{49} \\ \frac{17}{49} \\ \frac{16}{49} \end{matrix}\right]、X_3=\left[\begin{matrix} \frac{114}{343} \\ \frac{114}{343} \\ \frac{115}{343} \end{matrix}\right]、X_4=\left[\begin{matrix} \frac{801}{2401} \\ \frac{800}{2401} \\ \frac{800}{2401} \end{matrix}\right] 、X_5=\left[\begin{matrix} \frac{5602}{16807} \\ \frac{5603}{16807} \\ \frac{5602}{16807} \end{matrix}\right]\]
應該可以發現規律,\( X_n \)的三個元幾乎是平均的,且當\( n=1,4,7...\) 時 \( p_n的分子是\frac{7^n+2}{3}\) ,當\( n=2,3,5,6,8,9...\) 時 \( p_n的分子是\frac{7^n-1}{3}\)。因此,
\[ p_n = \begin{cases}
\frac{7^n+2}{3*7^n} , 當 n =1,4,7,10,... \\
\frac{7^n-1}{3*7^n} ,  當 n =2,3,5,6,8,9 ...
\end{cases}\]

後記:這題也可以由對角化的或是eigenvalues(特徵值)求一般項,但計算量頗大,eigenvalues還有複數,勇者可嘗試看看。考試時遇到類似題但沒有想法,建議還是先觀察前幾項,不要直接暴力解。

TOP

發新話題