發新話題
打印

114高雄聯招

1.
設\(m\)與\(n\)均為正實數,且滿足\(log_9m=log_{12}n=log_{16}(m+n)\),試問\(\displaystyle \frac{n}{m}\)之值為   

Suppose that p and q are positive numbers for which \( \displaystyle log_9 p=log_{12}q=log_{16}(p+q) \)what is the value of \( \displaystyle \frac{q}{p} \)?
(1988AHSME,https://artofproblemsolving.com/ ... Problems/Problem_26)

7.
設兩複數\(z_1\)與\(z_2\)滿足\(|\;z_1|\;=|\;z_1+z_2|\;=3\),\(|\;z_1-z_2|\;=3\sqrt{3}\),則\(\displaystyle log_3|\;(z_1\cdot \overline{z_2})^{100}+(\overline{z_1}\cdot z_2)^{100}|\;\)的值為何?   

設\(z_1,z_2\)為複數,\(|\;z_1|\;=|\;z_1+z_3|\;=3\),\(|\;z_2-z_1|\;=3\sqrt{3}\),求\(log(|\;(z_1\overline{z_2})^{2000}+(\overline{z_1}z_2)^{2000}|\;)=\)?
(2008TRML團體賽,100家齊女中,連結有解答https://math.pro/db/viewthread.php?tid=1122&page=2#pid9356)

8.
設空間中兩點\(A(-4,2,5),B(5,5,-1)\),與直線\(L\):\(\displaystyle \frac{x-3}{2}=\frac{y}{-1}=\frac{z+5}{-2}\)。在\(L\)上找一點\(P\),試求\(\overline{PA}+\overline{PB}\)最小值為   

9.
已知\(A(1,0,0),B(0,2,0),C(0,0,3)\),\(O\)為原點,若四面體\(OABC\)之體積被平面\(\displaystyle \frac{x}{3}+\frac{y}{2}+\frac{z}{k}=1\)所平分,試求實數\(k\)為   

10.
假設以\(cos9^{\circ}\)為一根的最小次數整係數方程式為\(f(x)=0\),求\(f(x)=\)   
連結有解答https://math.pro/db/thread-3480-1-1.html

15.
如圖(一),正方形\(ABCD\)內部一點\(P\),\(\overline{PD}=5\sqrt{2},\overline{PB}=4\sqrt{2},\overline{PA}=3\),求正方形\(ABCD\)面積=   
(建中通訊解題第17期,連結有解答https://www.sec.ntnu.edu.tw/uplo ... 09345be78/56-59.pdf)
https://math.pro/db/viewthread.php?tid=1152&page=4#pid4973

TOP

發新話題