發新話題
打印

110竹北高中

回復 4# studentJ 的帖子

10.
一數列\(\langle\;a_n\rangle\;\)滿足遞迴式\(\cases{a_1=1\cr a_n=2a_{n-1}+2^n(n>1)}\),試求一般式\(a_n=\)   
[解答]
設 \(b_n=a_n-n\cdot 2^n\),則 \(b_1=-1\),\(b_n=2b_{n-1}\)
得 \(b_n=-2^{n-1}\),\(a_n=n\cdot 2^n-2^{n-1}\)

16.
一個正立方體的裝置藝術斜立在公園的平地上。為了穩固此裝置藝術,除了將\(O\)點落在地面上,還在\(A\)、\(B\)、\(C\)四處各架上一根垂直地面的鐵柱,分別為\(\overline{AA'}\)、\(\overline{BB'}\)與\(\overline{CC'}\)。已知此正立方體的邊長5公尺,且\(\overline{AA'}=3\),\(\overline{BB'}=2\),則\(\overline{CC'}=\)   公尺。
[解答]
坐標化
\(O(0,0,0),A(4,0,3),B(-3/2,5\sqrt{3}/2,2)\),\(B\) 是 \(A\) 的 \(x,z\) 分輛對調,調整 \(OB\) 長度為 \(5\) ,高度為 \(2\) 得到的
\(C\) 將 \(OA\)、\(OB\) 向量外積調整長度 得 \(C(-3\sqrt{3}/2,-5/2,2\sqrt{3})\)

TOP

回復 14# acc10033 的帖子

13.
坐標平面上,在圓\(\Gamma\):\(x^2+y^2=4\)上取兩點\(A\)、\(B\),使此兩點在\(x\)軸上方,且摺回劣弧\(AB\)使其恰與\(x\)軸相切於\((1,0)\),則直線\(\overline{AB}\)的直線方程式為   
[解答]
找 \(x^2+y^2=4\) 和 \((x-1)^2+(y-2)^2=4\) 的根軸 \(2x+4y=5\)

15.
有一個不公正的硬幣,投出正面的機率為\(\displaystyle \frac{2}{3}\),投出反面的機率為\(\displaystyle \frac{1}{3}\),若投擲50次,則硬幣出現\(2k\)次(\(k=0,1,2,\ldots,25\))正面的機率為\(\displaystyle \frac{1}{a}(b+\frac{1}{c^d})\),其中\(a,b,c,d\in N\),且\(c\)為質數。求數組\((a,b,c,d)=\)   
[解答]
\(\displaystyle \sum\limits_{k=0}^{25} C^{50}_{2k} \left(\frac{2}{3}\right)^{2k}\left(\frac{1}{3}\right)^{50-2k}\)
\(\displaystyle =\left(\frac{1}{3}\right)^{50} \sum\limits_{k=0}^{25} C^{50}_{2k} 2^{2k}\)
\(\displaystyle =\left(\frac{1}{3}\right)^{50} \cdot \frac{(2+1)^{50}+(2-1)^{50}}{2}\)
\(\displaystyle =\frac{1}{2}\left[1+\frac{1}{30^{50}}\right]\)

TOP

回復 19# nanpolend 的帖子

12.
坐標平面上一直線\(x-my=n(n>0)\)過點\(A(5\sqrt{3},5)\),若\(\cases{x-\sqrt{3}y\ge 0\cr y\ge 0}\)所圍成之區域的外接圓直徑為20,則\(n=\)   
[解答]
設 \( A(5\sqrt{3},5)\) 為 \(x-my=n\) 和 \(x-\sqrt{3}y=0\) 軸的交點
設 \(B(n,0)\) 為 \(x-my=n\) 和 \(x\) 軸的交點
由 \(\displaystyle 20=\frac{\overline{AB}}{\sin{30^{\circ}}}\) 得 \(\overline{AB}=10\)
\(\overline{AB}^{2}=(5\sqrt{3}-n)^{2}+5^{2}=10^{2}\)
\(n=10\sqrt{3} \vee 0\) (\(0\)不合)

TOP

回復 24# icegoooood 的帖子

10.
一數列\(\langle\;a_n\rangle\;\)滿足遞迴式\(\cases{a_1=1\cr a_n=2a_{n-1}+2^n(n>1)}\),試求一般式\(a_n=\)   
[解答]
策略是將 \(2^n\) 有效的分配給 \(a_n\) 和 \(a_{n-1}\) 使分配後的數列為等比數列
若設 \(b_{n}=a_{n}+k\cdot 2^n\) 會發現無論 \(k\) 為何值 \(2^n\) 都會被抵銷
想要留下 \(2^n\) 勢必要在 \(2^n\) 前面乘上一個當 \(n\) 下降 \(1\) 而整個式子右邊會多 \(2^n\) 的東西
所以選擇乘 \(-n\)
因此 \(a_{n}-n\cdot 2^n =2[a_{n-1}-(n-1)\cdot 2^{n-1}]\)

13.
坐標平面上,在圓\(\Gamma\):\(x^2+y^2=4\)上取兩點\(A\)、\(B\),使此兩點在\(x\)軸上方,且摺回劣弧\(AB\)使其恰與\(x\)軸相切於\((1,0)\),則直線\(\overline{AB}\)的直線方程式為   
[解答]
考慮 \(x^2+y^2=4\) 對稱折線的圓與 \(x\) 軸相切於 \((1,0)\)
因為圓半徑為 \(2\) 且與 \(x\) 軸相切且在 \(x\) 軸上方
所以圓心為 \((1,2)\)
即此圓為 \((x-1)^2+(y-2)^2=4\)

附件

未命名.png (12.25 KB)

2021-4-29 20:49

未命名.png

TOP

發新話題
最近訪問的版塊