回復 4# studentJ 的帖子
10.
一數列\(\langle\;a_n\rangle\;\)滿足遞迴式\(\cases{a_1=1\cr a_n=2a_{n-1}+2^n(n>1)}\),試求一般式\(a_n=\) 。
[解答]
設 \(b_n=a_n-n\cdot 2^n\),則 \(b_1=-1\),\(b_n=2b_{n-1}\)
得 \(b_n=-2^{n-1}\),\(a_n=n\cdot 2^n-2^{n-1}\)
16.
一個正立方體的裝置藝術斜立在公園的平地上。為了穩固此裝置藝術,除了將\(O\)點落在地面上,還在\(A\)、\(B\)、\(C\)四處各架上一根垂直地面的鐵柱,分別為\(\overline{AA'}\)、\(\overline{BB'}\)與\(\overline{CC'}\)。已知此正立方體的邊長5公尺,且\(\overline{AA'}=3\),\(\overline{BB'}=2\),則\(\overline{CC'}=\) 公尺。
[解答]
坐標化
\(O(0,0,0),A(4,0,3),B(-3/2,5\sqrt{3}/2,2)\),\(B\) 是 \(A\) 的 \(x,z\) 分輛對調,調整 \(OB\) 長度為 \(5\) ,高度為 \(2\) 得到的
\(C\) 將 \(OA\)、\(OB\) 向量外積調整長度 得 \(C(-3\sqrt{3}/2,-5/2,2\sqrt{3})\)