發新話題
打印

111台中一中

第四題
\(\triangle ABC\)為直角三角形,其中\(\angle C=90^{\circ}\),\(\overline{AC}=16,\overline{BC}=5\),以\(C\)為圓心,半徑為4作一個圓\(\Gamma\),若\(D\)為圓\(\Gamma\)上一個動點,則\(\displaystyle \frac{1}{4}\overline{AD}+\overline{BD}\)的最小值為   
[解答]

附件

20220416_143502.jpg (33.69 KB)

2022-4-16 14:40

20220416_143502.jpg

TOP

二、填充2
\(\triangle ABC\)中,\(D\)為\(\overline{BC}\)中點,\(M\)為\(\overline{AD}\)上的任一點。直線\(\overline{BM}\)交\(\overline{AC}\)於\(N\),直線\(\overline{AB}\)是\(\triangle NBC\)外接圓的切線。若\(\displaystyle \frac{\overline{BC}}{\overline{BN}}=\frac{5}{4}\),求\(\displaystyle \frac{\overline{BM}}{\overline{MN}}=\)   
[解答]

附件

20220416_152804.jpg (91.17 KB)

2022-4-16 15:30

20220416_152804.jpg

TOP

二、填充3
已知\(\displaystyle A_n=\sum_{k=1}^n \frac{k\cdot 2^k}{(k+1)\cdot(k+2)}\),\(\displaystyle B_n=\sum_{k=1}^n 2^k\),\(n\in N\),求滿足\(|\;(n+2)A_n-B_n|\;>2022\)之最小自然數\(n=\)   
[解答]

附件

20220416_185846.jpg (45.11 KB)

2022-4-16 19:00

20220416_185846.jpg

TOP

二、填充4
設一數列\(\langle a_n \rangle\)滿足\(a_1=1\),\(a_{n+1}>a_n(n\in N)\)且\((a_{n+1})^2+(a_n)^2+1=2(a_{n+1}\cdot a_n+a_{n+1}+a_n)\)。令\(\displaystyle S_n=\sum_{k=1}^n a_k\),試求\(\displaystyle \lim_{n\to \infty}\frac{S_n}{na_n}=\)   
[解答]

附件

20220416_191021.jpg (68.98 KB)

2022-4-16 19:12

20220416_191021.jpg

TOP

二、填充6

附件

20220416_195751.jpg (62.81 KB)

2022-4-16 19:59

20220416_195751.jpg

TOP

二填充7

附件

20220416_200750.jpg (51.45 KB)

2022-4-16 20:09

20220416_200750.jpg

TOP

發新話題
最近訪問的版塊