回覆 9# idsharon 的帖子
第 6 題
設\(m\)為實數,已知直線\(x+my=0\)過定點\(A\),另一直線\(mx-y-m+3=0\)過定點\(B\),兩直線交於點\(P(x,y)\),則線段乘積\(\overline{PA}\cdot \overline{PB}\)的最大值為
[解答]
x + my = 0,過定點 A(0,0)
mx - y - m + 3 = 0,過定點 B(1,3)
易知兩直線垂直
PA^2 + PB^2 = AB^2 = 10
√(PA^2 * PB^2) ≦ (PA^2 + PB^2)/2
PA * PB ≦ 5
第 13 題
在\(\triangle ABC\)中,\(\overline{AB}=2\),\(\overline{BC}=1\),\(\overline{CA}=\sqrt{3}\),分別在三邊\(\overline{AB},\overline{BC},\overline{CA}上\)分別各取一點\(D,E,F\),使得\(\triangle DEF\)為正三角形。設\(\angle FEC=\theta\),當\(sin\theta\)為多少時,\(\Delta DEF\)周長最短 。
[解答]
令 EF = x,CE = xcosθ
∠DEF = ∠DBE = 60 度
∠BDE = ∠FEC = θ
由正弦定理
BE/sinθ = DE/sin60度
BE = (2/√3)xsinθ
xcosθ + (2/√3)xsinθ = 1
x = 1/[cosθ + (2/√3)sinθ] = √3/(2sinθ + √3cosθ] = √3/[√7sin(θ + α)]
當 sin(θ + α) = π/2 時,x 有最小值
此時 sinθ = cosα = 2/√7