回覆 4# mathchen 的帖子
第 7 題
在坐標平面上,若\(\Gamma\):\(\displaystyle \frac{x^2}{225}+\frac{y^2}{144}=1\)、\(A(9,0)\)、\(B(7,7)\),且動點\(P\)在\(\Gamma\)上,試求:\(5\overline{PA}+3\overline{PB}\)的最小值為。
[解答]
a = 15、b = 12、c = 9
右焦點 A(9,0)
離心率 e = c/a = 3/5
右準線:x = a^2/c = 25
作 PM 垂直右準線於 M
PM = PA/e = (5/3)PA
5PA + 3PB = 3[(5/3)PA + PB] = 3(PM + PB) ≧ 3BM = 54
等號成立於 B、P、M 共線