回復 6# ChuCH 的帖子
第 4 題
甲乙兩人比賽桌球,約定比賽進行到有一人比另一人多贏2局,或者打滿6局時比賽結束。設甲在每局中獲勝的機率均為43,且各局勝負互不影響。則比賽結束時,已賽局數X的期望值E(X)= 。
[解答]
有一人比另一人多贏 2 局,表示比賽結束時,只可能比了 2 或 4 或 6 局
(1) 比 2 局結束
機率 = (3/4)^2 + (1/4)^2 = 10/16
(2) 比 4 局結束
前 4 局贏的順序如下
甲乙甲甲
甲乙乙乙
乙甲甲甲
乙甲乙乙
機率 = (3/4)^3 * (1/4) * 2 + (1/4)^3 * (3/4) * 2 = 60/256
(3) 比 6 局結束
前 4 局贏的順序如下,這些情況都要比到六場
甲乙甲乙
甲乙乙甲
乙甲甲乙
乙甲乙甲
機率 = (3/4)^2 * (1/4)^2 * 4 = 36/256
所求 = (10/16) * 2 + (60/256) * 4 + (36/256) * 6 = 97/32