發新話題
打印

97中和高中

本主題由 bugmens 於 2025-7-11 11:34 合併

97中和高中

設 \([x]\) 表示不大於 \(x\) 的最大整數值。

對任意正整數 \(n\),定義 \(\displaystyle S_n = \sum_{k=1}^{n}\left[\frac{n}{k}\right]\),求 \(\displaystyle S_{2002} - S_{2001}.\)

解答:

因為 \(2002 = 2\cdot 7\cdot 11\cdot 13\),所以 \(2002\) 的正因數有 \(\left(1+1\right)\left(1+1\right)\left(1+1\right)\left(1+1\right)=16\) 個。



若 \(k\) 為 \(2002\) 的正因數,則 \(\displaystyle \frac{2002}{k}\) 是整數 \(\Rightarrow \displaystyle\left[\frac{2001}{k}\right]=\left[\frac{2002}{k}-\frac{1}{k}\right]=\left[\frac{2002}{k}\right]-1\),

  \(\displaystyle\Rightarrow \left[\frac{2002}{k}\right]\) 比 \(\displaystyle\left[\frac{2001}{k}\right]\) 恰多 \(1\)。



若 \(1<k<2002\) 且 \(k\) 不為 \(2002\) 的正因數,則

  存在整數 \(q,r\) 使得 \(2002=qk+r\),其中 \(0<r<k\,\Rightarrow\, 0 \leq r-1<k-1\),

  \(\Rightarrow 2001 = qk + (r-1)\)

  \(\Rightarrow \displaystyle\left[\frac{2002}{k}\right]=q=\left[\frac{2001}{k}\right]\),

  \(\displaystyle\Rightarrow \left[\frac{2002}{k}\right]\) 與 \(\displaystyle\left[\frac{2001}{k}\right]\) 相等。



故,\(\displaystyle S_{2002} - S_{2001}=16.\)

多喝水。

TOP

引用:
原帖由 arend 於 2009-5-7 06:02 PM 發表
二元二次方程式:x^2+xy+y^2=6 , 求x^2-y^2的最大值
答案是4sqrt(3)
版上的老師可幫忙解一下嗎?那最小值又為何?

謝謝
令 \(x=u+v,\, y=u-v\),則

\[x^2+xy+y^2=6\]
\[\Leftrightarrow \left(u+v\right)^2+\left(u+v\right)\left(u-v\right)+\left(u-v\right)^2=6\]
\[\Leftrightarrow 3u^2+v^2=6\, ............... (*)\]

且題目所要求的 \(x^2-y^2 = \left(u+v\right)^2 - \left(u-v\right)^2 = 4uv\)

由 (*)及算幾不等式,可得

\[\frac{3u^2 + v^2}{2}\geq \sqrt{3u^2v^2}\]
\[\Leftrightarrow \frac{6}{2}\geq \sqrt{3}\left| uv \right|\]
\[\Leftrightarrow -\sqrt{3} \leq uv\leq \sqrt{3}\]
\[\Leftrightarrow - 4 \sqrt{3} \leq 4uv\leq 4\sqrt{3}\]

所以,題目所要求的最大值為 \(4\sqrt{3}\),最小值為 \(-4\sqrt{3}.\)

多喝水。

TOP

發新話題