Find the least positive integer \(n\) such that
\(\displaystyle \frac{1}{sin45^{\circ}sin46^{\circ}}+\frac{1}{sin47^{\circ}sin48^{\circ}}+\ldots+\frac{1}{sin133^{\circ}sin134^{\circ}}=\frac{1}{sin n^{\circ}}\)
(2000AIME II,連結有解答https://artofproblemsolving.com/ ... Problems/Problem_15) 作者: cut6997 時間: 2025-3-22 00:18
10.
令x=cosa ,取0<=a<=pi
則原式等同sina=cos(3a)
=>cos(pi/2-a)=cos(3a)
=>pi/2-a+2k*pi=3a or pi/2-a+2k*pi=-3a
=>a=pi/8+k*pi/2 or -pi/4-k*pi
=>a=pi/8, 5pi/8 or 3pi/4
=>所求=cos(pi/8)cos(5pi/8)cos(3pi/4)
=1/2(cos(6pi/8)+cos(4pi/8))cos(3pi/4)
=1/2*(-2^(-0.5))*(-2^(-0.5))=+0.25
沒排版看得連自己眼睛都脫窗了,感謝鋼琴老師指正