選擇第 8 題:
已知三次函數 \(\displaystyle y = x^3 + ax^2 + bx + c\) 之圖形與拋物線 \(\displaystyle y = x^2\) 之圖形交於相異三點 \(\displaystyle P(-1, y_1 )\)、\(\displaystyle Q (\frac{1}{2},y_2) \)、\(\displaystyle R(x_3, y_3 )\),且 \(\displaystyle \overline{PQ}\) 垂直 \(\displaystyle \overline{QR}\),則 \(\displaystyle a + b + c =\)______。
解答:
\(\displaystyle P,Q\) 兩點在 \(\displaystyle y=x^2\) 直線上,帶入可得 \(\displaystyle y_1=1,y_2=\frac{1}{4}\),
再來找 \(R(x_3,x_3^2)\),
因為 \(\displaystyle \overline{QR}\) 與 \(\displaystyle \overline{PQ}\) 垂直,所以斜率相乘等於 \(\displaystyle -1\),
從而解出 \(\displaystyle R(\frac{3}{2},\frac{9}{4})\),
將 \(\displaystyle P,Q,R\) 三點帶入 \(\displaystyle y=x^3+ax^2+bx+c\),
可解得 \(\displaystyle a=0,b=-\frac{5}{4},c=\frac{3}{4}\)