發新話題
打印

99桃園縣現職教師高中聯招

推到噗浪
推到臉書

回復 10# 老王 的帖子

平行的情形我寫錯了,應該如老王所說"過O作AB的平行線"  !

TOP

請問一下第五題的第一題.二進位後要怎麼算出答案???不懂這之間的關係!!不好意思^^

TOP

\(\displaystyle a_{25}=1\times3^4+1\times3^3+0\times3^2+0\times3^1+1\times3^0=109\)

\(\displaystyle b_{25}=4^{1+1+0+0+1}\)

TOP

引用:
原帖由 bugmens 於 2010-5-16 02:32 PM 發表
[提示]
(1)
25的二進位為11001

a25=109
...
請問如何得知要使用2進位來觀察呢。
感覺是由觀察法得到
可是卻不是很直接
煩請各位老師解惑 謝謝

TOP

引用:
原帖由 jisam 於 2010-5-31 08:31 PM 發表
請問如何得知要使用2進位來觀察呢。
感覺是由觀察法得到
可是卻不是很直接
煩請各位老師解惑 謝謝
如果對組合數學的生成函數有感覺的話,

應該可以看出 \(x\) 的次方數就是〝由 \(1,3,3^2,3^3\cdots\) 每個數字至多只取一次之和〞的所有可能性,

所以各種取法可以對應到所有自然數的 \(2\) 進位的表示法.

而每取用一個 \(3^n\,(n\in N\cup\{0\})\),\(x\) 的係數就會多乘一個 \(4.\)

TOP

回復 15# weiye 的帖子

謝謝weiye老師 待我細細品味 感謝

TOP

這一題的多選第10題,請問答案A符合所求嗎?
不然公佈的答案怎麼沒有A?

TOP

引用:
原帖由 八神庵 於 2010-6-19 04:37 PM 發表
這一題的多選第10題,請問答案A符合所求嗎?
不然公佈的答案怎麼沒有A?
多選第 10 題

在坐標平面上,點 \(A\) 的坐標是 \((2,0)\),\(B\)是圓C:\(x^2+y^2+4x+6y+4=0\)上的點,則下列那些值可以是 \(\overline{AB}\) 的長度?

解答:

圓C:\(\left(x+2\right)^2+\left(y+3\right)^2=3^2\) 得圓心 \(Q(-2,-3)\),半徑 \(r=3\)

\(\overline{AQ}-r\leq\overline{AB}\leq\overline{AQ}+r\,\Rightarrow\, 2\leq\overline{AB}\leq8.\)

答案似乎要有 A 選項才是。

TOP

引用:
原帖由 老王 於 2010-5-26 09:28 PM 發表


圓心O是顯然解,所以若AB//CD,過O做AB的平行線即可
若直線AB和CD交於F,連接FO即可,當然,文中所說的E'也是正確的
先謝謝weiye和bugments兩位老師幫我解釋99桃園新進教師問題,這邊想請問各位老師,為何不論AB是否平行CD,連接圓心O都可呢? 謝謝

TOP

回復 19# kittyyaya 的帖子

(非選6)

1. ∠AEB=90° ⇒ AB弧 + CD弧 = 180° ⇒ ∠AOB 與 ∠COD 互補

 ⇒ ΔAOB 面積 = ΔCOD面積

2. 若 AB//CD,則過 O 作 AB 的平行線,其上任取一點 P,

 P到AB直線的距離=O到AB直線的距離,

 P到CD直線的距離=O到CD直線的距離。


3. 若 AB 不平行 CD,設 AB 直線與 CD 直線相交於 F,

 則取 OF 直線上任意點 P,

 因為 O到AB直線的距離:P到AB直線的距離到=OF線段長:PF線段長,

   且 O到CD直線的距離:P到CD直線的距離到=OF線段長:PF線段長。

 所以 P到AB直線的距離:P到CD直線的距離=O到AB直線的距離:O到CD直線的距離。

由上述 1,2,3,以及同底等高的三角形會等面積,

所以,上述所取之 P 會滿足 ΔPAB 面積 = ΔPCD面積

TOP

發新話題