此題如果要用積分,做法同
https://math.pro/db/thread-156-1-1.html
註:
順便幫上面的不等式 \(2\left(\sqrt{k+1}-\sqrt{k}\right) < \frac{1}{\sqrt{k}} < 2\left(\sqrt{k}-\sqrt{k-1}\right)\) 加上說明.
因為對任意正整數 \(k\),恆有
\[\frac{1}{\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}} > \frac{2}{\sqrt{k+1}+\sqrt{k}}=2\left(\sqrt{k+1}-\sqrt{k}\right),\]
且
\[\frac{1}{\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}} < \frac{2}{\sqrt{k}+\sqrt{k-1}}=2\left(\sqrt{k}-\sqrt{k-1}\right).\]
故,
\[2\left(\sqrt{k+1}-\sqrt{k}\right) < \frac{1}{\sqrt{k}} < 2\left(\sqrt{k}-\sqrt{k-1}\right).\]