1.
設\(z\)為複數,若\(\displaystyle z+\frac{1}{z}=\sqrt{3}\),求\(\displaystyle z^{2025}+\frac{1}{z^{2025}}=\)?
(A)\(\sqrt{3}\) (B)\(-1\) (C)0 (D)1
26.
求\(\displaystyle \int_0^4 (1-\sqrt{16-x^2})dx=\)?
(A)\(4-12\pi\) (B)\(4-8\pi\) (C)\(4-4\pi\) (D)\(4-2\pi\)
28.
設函數\(y=\sqrt{4-x^2}\)的圖形與\(x\)軸、\(y\)軸所圍成的封閉區域為\(R\),則區域\(R\)繞\(y\)軸旋轉所得的旋轉體體積是多少?
(A)\(5\pi\) (B)\(\displaystyle \frac{16}{3}\pi\) (C)\(6\pi\) (D)\(\displaystyle \frac{20}{3}\pi\)
29.
求\(\sqrt{(x+1)^2+(x^2-2)^2}-\sqrt{x^2+(x^2+2)^2}\)的最大值。
(A)1 (B)\(\displaystyle \frac{5}{2}\) (C)\(\sqrt{10}\) (D)\(\sqrt{15}\)
35.
設\(x\)、\(y\)是實數,則\(x^2+y^2+(x-2y+6)^2\)的最小值為何?
(A)5 (B)6 (C)7 (D)8
找\( 2x^2+y^2+(2x-y+3)^2 \) 的最小值。
https://math.pro/db/thread-1790-1-1.html
37.
設\(A(4,5)\)是\(x^2+y^2-4x-6y+4=0\)的圖形的內部一點,則所有通過此點的弦的中點會形成一個圓,則此圓的圓心為何?
(A)\((3,4)\) (B)\((3,2)\) (C)\((2,3)\) (D)\((2,4)\)
40.
\(\displaystyle \frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+\ldots+\frac{17}{2^9}=\)?
(A)\(\displaystyle \frac{251}{256}\) (B)\(\displaystyle \frac{1515}{512}\) (C)\(\displaystyle \frac{2515}{1024}\) (D)\(\displaystyle \frac{3049}{1024}\)
47.
\(\displaystyle 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots=\)?
(A)\(\displaystyle \frac{\pi}{2}\) (B)\(\displaystyle \frac{\pi}{4}\) (C)\(\displaystyle \frac{\pi}{8}\) (D)\(\displaystyle \frac{\pi}{16}\)