回覆 4# 耳東陳 的帖子
填充第 7 題
設有一顆正六面體骰子,其中三面塗成黃色,兩面塗成藍色,最後一面塗成紫色,投擲時每一面出現的機率相同,若投擲此骰子5次,紀錄黃色、藍色、紫色出現的次數各別為\(x,y,z\)次(其中\(x+y+z=5\)),則次數乘積\(xyz\)的期望值為 。
[解答]
考慮以下 6 種 (x,y,z) 就好
(3,1,1)、(1,3,1)、(1,1,3)
(2,2,1)、(2,1,2)、(1,2,2)
所求 = 3 * C(5,3) * C(2,1) * [(1/2)^3(1/3)(1/6) + (1/2)(1/3)^3(1/6) + (1/2)(1/3)(1/6)^3] + 4 * C(5,2) * C(3,2) * [(1/2)^2(1/3)^2(1/6) + (1/2)^2(1/3)(1/6)^2 + (1/2)(1/3)^2(1/6)^2] = 5/3