貳、非選第8題
\(X\)為有限集合,定義函數\(f(X)\)為\(X\)內最大的數,減第二大的數,加第三大的數,減第四大的數,\(\ldots\),依此類推。
例如:\(f(\{\;3,6,10,1 \}\;)=10-6+3-1=6\),\(f(\{\;3,6,10,2,4 \}\;)=10-6+4-3+2=7\)。
若\(A=\{\;1,2,3,4,\ldots,112 \}\;\),而\(X\)為\(A\)中的非空子集,則所有\(f(x)\)的和為 。
[解答]
所有不包含\(112\)的集合\(X\),其\(f(X)+f(X∪\{112\})=112\)。
所以只要計算\(112\)出現幾次即可,因此總和為\(112×2^{111}\)。