Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
 35 1234
發新話題
打印

111臺南女中

111臺南女中

這張應該要 60 以上才能進複試了

附件

111 臺南女中.pdf (586.35 KB)

2022-4-17 14:19, 下載次數: 5432

TOP

填充第 9 題
謙卑謙卑再謙卑,哈哈哈
真有素養和創意的題目

TOP

第九題:    4H327!3!3!

TOP

引用:
原帖由 thepiano 於 2022-4-17 14:19 發表
這張應該要 60 以上才能進複試了
好多熟面孔阿~~
那些題目都是老朋友了

TOP

引用:
原帖由 Ellipse 於 2022-4-17 17:50 發表

好多熟面孔阿~~
那些題目都是老朋友了
寫完後的第一個感覺就是
去年平均12不到,所以今年出題出得很溫柔

拚速度跟穩定度的題目

TOP

請問填充2,填充3

TOP

2. 多寫幾項對照一下,所求為2022的因數個數


3.假設P(2t3t4t)Q(2+4s3+3s1+2s)
其中PQL1
解方程式4s2t2=3t52+3s=4t72s6
可得s=2t=3 代回去求長度

TOP

引用:
原帖由 nnkuokuo 於 2022-4-18 11:47 發表
請問填充2,填充3
填充2
k為大於1的正整數,由除法原理2021=kqk+rk2022=kqk+rk+1

rk+1k,則[k2022][k2021]=qkqk=0

rk+1=k,則2022=k(qk+1),此時[k2022][k2021]=(qk+1)qk=1
k為2022之因數
尋找除了1和2022,2022之正因數,共有6個

所以所求為[12022][12021]+2021k=2[k2022][k2022]+[20222022]=1+6+1=8 

即如樓上所說,為2022的正因數個數

TOP

回復 8# 5pn3gp6 的帖子

謝謝老師,了解!另外想問填充4

TOP

引用:
原帖由 nnkuokuo 於 2022-4-18 13:59 發表
謝謝老師,了解!另外想問填充4
要三個子集合兩兩交集後,仍為空集合,
則1,2,3,4,5,6這六個元素,最多只能屬於其中一次的集合

每個元素都有 只屬於第一次的集合、只屬於第二次的集合、只屬於第三次的集合、都不屬於 四種選擇
所以所求為46=4096

考試時沒想太多,我是用類似窮舉去做的
第一次從6個中挑p個,第二次從剩下的6-p個中挑q個,第三次剩下的(6-p-q)個可選可不選
6p=0Cp66pq=0Cq6p26pq
註:C00=1



但這張我兩題排列組合/機率的題目,都犯蠢在一個小地方
不夠熟練阿

TOP

 35 1234
發新話題