回復 2# satsuki931000 的帖子
令f(x)=an(x-x1)(x-x2)....(x-xn) , F(t)=x1^t+x2^t+x3^t+.....+xn^t
f'/f=1/(x-x1)+1/(x-x2)+.......+1/(x-xn)
=1/x * [ 1/(1-(x1/x))+1/(1-(x2/x)) + 1/(1-(x3/x))+.........+ 1/(1-(xn/x))]
=1/x * [ (1+ (x1/x)+(x1/x)^2+....) +(1+ (x2/x)+(x2/x)^2+....) +.........(1+ (xn/x)+(xn/x)^2+....)]
=F(0)/x+F(1)/x^2+F(2)/x^3+.......
故本題所求為F(5)應該是x^(-6)的係數才對喔!
5 +0 -3 -2 -1 ........f'
0 0 0 0 0 0 0
1 5 0 2 3 6 10
1 5 0 2 3 6 10
1 5 0 2 3 6 10
f 1 5 0 2 3 6 10
------------------------------------------------------------
5 +0 +2 +3 +6+10+11+..... = 5x^(-1)+0x^(-2)+2x^(-3)+3x^(-4)+6x(-5)+10x^(-6)+...... , x^(-6)的係數 10 為所求.