16 12
發新話題
打印

109中壢高中代理

推到噗浪
推到臉書

請教老師11題

請問老師第11題,訂完座標後,算出來的 h居然是複數根

麻煩老師指點迷津

附件

115393.jpg (91.97 KB)

2020-7-15 15:21

115393.jpg

TOP

回復 11# anyway13 的帖子

填11.
平面的法向量不只一個

兩平面的夾角也不只一個

所以您算出來的 \( \vec{n_1}, \vec{n_2} \) 的夾角不一定是 \( \beta \) 也可能是它的補角
文不成,武不就

TOP

回復 12# 寸絲 的帖子

謝謝寸絲老師,知道哪裡出毛病了

TOP

請教第19題

請問版上老師第19題要怎模做啊

完全沒有頭緒

TOP

回復 14# anyway13 的帖子

第19題
\(\begin{align}
  & \frac{3}{2!}-\frac{4}{3!}+\frac{5}{4!}-\frac{6}{5!}+\frac{7}{6!}-\cdots +{{\left( -1 \right)}^{n+1}}\times \frac{n+2}{\left( n+1 \right)!} \\
& =\left[ \frac{2}{2!}-\frac{3}{3!}+\frac{4}{4!}-\frac{5}{5!}+\frac{6}{6!}-\cdots +{{\left( -1 \right)}^{n+1}}\times \frac{n+1}{\left( n+1 \right)!} \right]+\left[ \frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}-\cdots +{{\left( -1 \right)}^{n+1}}\times \frac{1}{\left( n+1 \right)!} \right] \\
& =\left[ 1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{5!}-\cdots +{{\left( -1 \right)}^{n+1}}\times \frac{1}{n!} \right]+\left[ \frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}-\cdots +{{\left( -1 \right)}^{n+1}}\times \frac{1}{\left( n+1 \right)!} \right] \\
& =1 \\
\end{align}\)

TOP

回復 15# thepiano 的帖子

謝謝鋼琴老師,想不到阿

真是太神奇了

TOP

 16 12
發新話題