47 12345
發新話題
打印

109桃園高中職聯招

回復 40# thepiano 的帖子

謝謝鋼琴老師

乾淨俐落!

TOP

計算

3.

附件

DSC_1722~2.JPG (982.88 KB)

2021-3-3 22:03

DSC_1722~2.JPG

TOP

引用:
原帖由 anyway13 於 2020-6-4 19:00 發表
謝謝鋼琴老師

乾淨俐落!
想請問各位老師

怎麼知道如果要收斂,則an就得在正負1之間呢? 謝謝

TOP

回復 43# plpl69541 的帖子

一個數要介於 -1 和 1 之間,它平方後才會愈來愈小

TOP

謝謝鋼琴老師
原本糾結是後面有3/2
所以是不會影響的嗎?
感謝各位老師幫忙,謝謝。

TOP

計算1(a)
令 \( f(x)=\frac{1}{2}x^{2}-x+2 \),則 \( a_{n+1}=f(a_{n}) \)

我們先分析三點數列的行為

(1) \( \{a_{n}\} \) 為遞增數列(單調遞增):\( f(x)-x=\frac{1}{2}(x-2)^{2}\geq0 \Rightarrow x\leq f(x) \) 恆成立,且等號僅在 \( x=2 \) 時發生。

(2)若 \( 0\leq x\leq2 \),\( f(x)-2=\frac{1}{2}x(x-2)\leq0 \Rightarrow0\leq x\leq f(x)\leq2 \)。

(3)若 \( \{a_{n}\} \) 收斂於 \( a \),則 \( a=f(a) \Rightarrow a=2 \)。

當 \( a_{1}>2 \) 時,則 \( a_{n}\geq a_{1}>2 \),故 \( \{a_{n}\} \) 發散(不能收斂於2,再由(3)得發散) 。

當 \( a_{1}<0 \) 時,則 \( a_{2}=f(a_{1})=f(2-a_{1})\geq2-a_{1}>2 \Rightarrow a_{n+1}\geq a_{2}>2 \),故 \( \{a_{n}\}  \) 發散。

當 \( 0\leq a_{1}\leq2 \) 時,\( \{a_{n}\} \) 為遞增數列且有上界 2,故 \( \{a_{n}\} \) 收斂於 2。
網頁方程式編輯 imatheq

TOP

引用:
原帖由 tsusy 於 2021-3-3 17:59 發表
計算1(a)
令 \( f(x)=\frac{1}{2}x^{2}-x+2 \),則 \( a_{n+1}=f(a_{n}) \)

我們先分析三點數列的行為

(1) \( \{a_{n}\} \) 為遞增數列(單調遞增):\( f(x)-x=\frac{1}{2}(x-2)^{2}\geq0 \Rightarrow x\leq f(x) \) 恆 ...
謝謝寸絲老師及鋼琴老師!感恩

TOP

 47 12345
發新話題