回復 4# Rita 的帖子
計算第5題
已知斜三稜柱\(ABC-A_1B_1C_1\)的各稜長均為2,測稜\(BB_1\)與底面\(ABC\)所成角為\(\displaystyle \frac{\pi}{3}\),且側面\(ABB_1A_1⊥\)底面\(ABC\).
(1)證明:點\(B_1\)在平面\(ABC\)上的投影點\(O\)為\(AB\)的中點.
(2)求點\(C_1\)到平面\(CB_1A\)的距離.
[證明]
(1) 面\(AB{{B}_{1}}{{A}_{1}}\)垂直面\(ABC\),\({{B}_{1}}\)在面\(ABC\)上的投影點\(O\)在\(\overline{AB}\)上
\(\angle {{B}_{1}}BO={{60}^{\circ }},\overline{{{B}_{1}}B}=2,\overline{BO}=1\),\(O\)為\(\overline{AB}\)中點
(2) 四面體\({{C}_{1}}-C{{B}_{1}}A\)、\(B-C{{B}_{1}}A\)、\(A-{{A}_{1}}{{B}_{1}}{{C}_{1}}\)的體積均為斜三稜柱的\(\frac{1}{3}\)
設\({{C}_{1}}\)到面\(C{{B}_{1}}A\)的距離為\(h\)
\(\begin{align}
& \overline{AC}=2,\overline{A{{B}_{1}}}=\overline{B{{B}_{1}}}=2,\overline{C{{B}_{1}}}=\sqrt{{{\overline{O{{B}_{1}}}}^{2}}+{{\overline{OC}}^{2}}}=\sqrt{3+3}=\sqrt{6} \\
& \Delta C{{B}_{1}}A=\frac{\sqrt{15}}{2} \\
& \frac{\sqrt{15}}{2}\times h\times \frac{1}{3}=\frac{\sqrt{3}}{4}\times {{2}^{2}}\times \sqrt{3}\times \frac{1}{3} \\
& h=\frac{2}{5}\sqrt{15} \\
\end{align}\)