18 12
發新話題
打印

107新竹女中代理

推到噗浪
推到臉書

回覆9#

填充3.

[ 本帖最後由 laylay 於 2018-7-4 18:26 編輯 ]

附件

20180704_182701.jpg (498.66 KB)

2018-7-4 18:26

20180704_182701.jpg

TOP

請問證明一: an趨近於0, 怎麼證?

an=1*3*5*....*(2n-1)/[2*4*6*.....*(2n)] = c(2n,n)/2^(2n)=c(2n,n) / [ c(2n,0)+c(2n,1)+......+c(2n,2n) ],
既然an趨近於0 ,  那麼(2n)an=3*5*....*(2n-1)/[2*4*6*.....*(2n-2)] 應該是趨近於無窮大吧?
那是否存在0<b<1 使 n^b*an趨近於常數c>0 , b,c又是多少呢?

[ 本帖最後由 laylay 於 2018-7-5 07:11 編輯 ]

TOP

直覺的想  如果從1/2份開始一直被瓜分(一直乘以真分數)   感覺最後會逼近0

TOP

回復 13# lulu25 的帖子

感謝您的解答,那麼 b=1/2 嗎 ?  c 是多少呢 ?

TOP

承12#,13#,14#

2an>b(n-1)
=>2an^2>an*b(n-1)=1/(2n) =>1/(2ㄏn)<an , 又由 #13 知 an<1/ㄏ(2n+1)<1/ㄏ(2n) =>1/2<an*ㄏn <1/ㄏ2,對於每個自然數 n
=> b=1/2 , n^b*an = an*ㄏn 的極限值介於1/2=0.5  到1/ㄏ2=0.707 之間 , 有人知道 此極限值 c 為何嗎?
n>4 時
(2*4*6*8)/(1*3*5*7)*an>(3*5*7)/(2*4*6)*b(n-1) => an^2>(3*3*5*5*7*7)/(2*2*4*4*6*6*8)*an*b(n-1)=>an*ㄏn>(3*5*7)/(2*4*6*4)=35/64=0.546875
(2*4*6*8)/(1*3*5*7)*an<(3*5*7*9)/(2*4*6*8)*bn => an^2<(3*3*5*5*7*7*9)/(2*2*4*4*6*6*8*8)*an*bn=>an*ㄏ(2n)<an*ㄏ(2n+1)<(3*5*7*3)/(2*4*6*8)
=>an*ㄏn<ㄏ2/2*(3*5*7*3)/(2*4*6*8)=105/256*ㄏ2=0.580049
所以0.546875<an*ㄏn <0.580049,對於每個自然數 n>4
由 12# 知道 丟(2n)個公正銅板 (n>4 時)
則正反面一樣多,各為n個的機率=an , 若再乘上ㄏn 總是會介於0.546875 , 0.580049 之間喔 !

[ 本帖最後由 laylay 於 2018-7-5 16:39 編輯 ]

附件

20180705_123205.jpg (622.66 KB)

2018-7-5 12:31

20180705_123205.jpg

TOP

想詢問一下計算證明1
an有整理到...C(2n ,n)/(4^n)然後就卡住惹
然後如果這時候利用斯特靈公式
再取極限...這個方法是否可行?!

TOP

回覆16#

太感謝您的提示了!

[ 本帖最後由 laylay 於 2018-7-8 05:19 編輯 ]

附件

20180708_051917.jpg (549.43 KB)

2018-7-8 05:19

20180708_051917.jpg

TOP

回復 17# laylay 的帖子

令 Dn=(1*2)*(4*5)*(7*8)......*[(3n-2)*(3n-1)]/[(3*3)*(6*6)*(9*9)*......*((3n)*(3n))]
         =(3n)!/[3^(3n)*(n!)^3]
     Dn 表示 有(3n) 個人,各隨意出剪刀石頭布,結果剪刀石頭布出的人數一樣多(各 n 個人) 的機率
則 由17# 可得 lim (Dn*n) (n趨近於無窮大)=ㄏ3/(2PI) 約為 0.2756644
意即 n 夠大時 (3n) 個人各隨意出剪刀石頭布,結果剪刀石頭布出的人數一樣多的機率 將近 0.2756644/n
n=50 時 (共150人) 此機率 為 0.274442/50=0.005489

那麼 令  En=1*4*7......*(3n-2)/[2*5*8*......*(3n-1)]
則想請問 lim (En*ㄏn) (n趨近於無窮大) 為何呢?

[ 本帖最後由 laylay 於 2018-7-8 22:51 編輯 ]

TOP

 18 12
發新話題