107新北市高中聯招
107.5.30試題疑義公告
填充第6題
1.填充第6題所指的區域\(R\)是由「拋物線\(y=x^2\)、直線\(x=0\)及直線\(y=1\)所圍成的區域」;這個區域\(R\)有兩種可能(一個位於第一象限、另一個位於第二象限);但不管哪一種可能,區域\(R\)繞著直線\(y=2\)旋轉所得的旋轉體之體積皆為\( \displaystyle \frac{28}{15}\pi \)。
2.應考者提供的解法是將以上的兩個可能區域合併計算,得答案為\(\displaystyle \frac{28}{15}\pi \times 2=\frac{56}{15}\pi\)。然而,此種解法所對應的題目敘述應該是「…\(R\)代表由拋物線\(y=x^2\)及直線\(y=1\)所圍成的區域…」。
3.出題者的用意是希望應考者能將兩種可能的\(R\)擇一來計算即可(因為兩種算出來的結果相同),但卻因此造成一個模糊空間,使得應考者分別將兩種可能區域\(R\)的旋轉體之體積(\(\displaystyle \frac{28}{15}\pi\))算出,再合併為\(\displaystyle \frac{56}{15}\pi\)。
4.基於此應考者已能先正確算出\(\displaystyle \frac{28}{15}\pi\),所以其(合併兩區域所得的)答案\(\displaystyle \frac{56}{15}\pi\)也給分。
附件
-
107新北市高中聯招題目.pdf
(127.51 KB)
-
2018-5-27 16:35, 下載次數: 11635
-
107新北市高中聯招答案.pdf
(68.36 KB)
-
2018-5-27 16:35, 下載次數: 11491
-
107新北市高中聯招試題疑義答覆.pdf
(572.42 KB)
-
2018-5-30 09:45, 下載次數: 10638