第 8 題
針對原題,樓上的方法是有比較快, 但若原題目末三位由 999 隨意改為例如 543 ,則................
設 n^3末三位為543,易知 n 的個位為7, 設 n=10a+7 , => n^3=1000a^3+3(10a)^2*7+3(10a)*49+343 末三位為 543
=> 100a^2+470a+343=10*(10a^2+47a+34)+3 末三位為 543 =>a(10a+47)末兩位為 20 => a 的個位為0 , 設 a=10b
=> 10b(100b+47)=100x+70b=100x+10*(7b) 末兩位為 20 => 7b 個位為 2=>b 的個位為 6 , 設 b=10c+6 => a=100c+60 =>n=1000c+607
故所求=(1000*1+607)^3=1607^3
此時不知是否有更好的方法?