回復 56# jasonmv6124 的帖子
填充9
設\(P\)為直線\(x-y+5=0\)上一點,\(Q\)為雙曲線一支\(\Gamma\):\(\displaystyle x=\sqrt{\frac{9}{4}y^2+9}\)上一點,求\(\overline{PQ}\)最小值= 。
[解答]
\(y=x+5\)
\(m=1\)
\(x=\sqrt{\frac{9}{4}y^2+9}>0\)(右支)
\(\Rightarrow\)整理\(\displaystyle \frac{x^2}{9}-\frac{y^2}{4}=1\)
\(a=3\),\(b=2\)
雙曲線微分切線公式:
\(y=mx\pm\sqrt{a^2m^2-b^2}\)
\(m=1\)時
\(y=x\pm\sqrt{3^2\cdot1^2-2^2}\)
\(=x\pm\sqrt{9-4}\)
\(=x\pm\sqrt{5}\)(正不合)
右支
\(\{M:y=x-\sqrt{5}\Rightarrow x-y=\sqrt{5}\)
\(\{L:y=x+5\Rightarrow x-y=-5\)
\(\displaystyle d(L,M)=\frac{|\sqrt{5}-(-5)|}{\sqrt{1^2+(-1)^2}}\)
\(\displaystyle =\frac{\sqrt{5}+5}{\sqrt{2}}\)
\(\displaystyle =\frac{(\sqrt{5}+5)\sqrt{2}}{2}\)
\(\displaystyle =\frac{\sqrt{10}+5\sqrt{2}}{2}\)