發新話題
打印

[請教]空間中,求和四面體ABCD的四頂點等距的平面有多少個?

[請教]空間中,求和四面體ABCD的四頂點等距的平面有多少個?

]空間中,ABCD不共面,求與四面體ABCD的四個頂點距離都相等的平面有多少個?

111.3.25補充
與四面體\(ABCD\)的四個頂點等距離的平面共有   個。
(89高中數學能力競賽第一區筆試二)

113.5.25補充
給定空間中6點,其中任四點不共面,則至多有   個相異的平面恰與其中四點等距。
(101台中二中,https://math.pro/db/viewthread.php?tid=1367&page=1#pid5714)

TOP

空間中,A, B, C, D 不共面,求與四面體 ABCD 的四個頂點距離都相等的平面有多少個?


先思考基本要素:

空間中,與平面 E 距離 = d (d > 0) 的所有點,形成 2 個平面 E1 與 E2。  E1 ,E2 與 E 平行,位於 E 的相異側,且與 E 距離 = d。

進而,若點 A, B 與平面 E 距離 = d 且位於 E 的相同側,則向量 AB 垂直 E 的法向量; 而若 A, B 位於 E 的相異側,則 E 過 A, B 的中點。


以下考慮與不共面四點 A, B, C, D 距離都相等的平面 E 的個數,依照四點在 E 的同異側,分為 (4, 0),(3,1),(2,2) 三種情形 (顯然 A, B, C, D 皆不在 E 上)。

case 1:  (4, 0) 則 A, B, C, D 共面,不合。

case 2:  (3, 1) 如: {A, B, C} 與 {D} ,則 E 平行 A, B, C 所決定的平面 ( A, B, C 必不共線),且過 A, D 的中點,故 E 恰有 1 個。由於本類有 4 種分組方式,故 (3, 1) 類共有 4 個平面E。

case 3:  (2, 2) 如: {A, B} 與 {C, D} ,則 E 的法向量垂直向量 AB 與向量 CD (向量 AB 與向量 CD 必不平行),且過 A, C 的中點,故 E 恰有 1 個。由於本類有 3 種分組方式,故 (2, 2) 類共有 3 個平面E。

綜上,所求平面共有 7 個。

(類似地,平面上,與不共線三點等距的直線共 3 條)


TOP

高二數學

與四面體四頂點等距的平面有7個
哪位高手幫忙 解說
多~謝

TOP

回復 1# jmath2021 的帖子

正四面體?

平面兩側分別為1,3個頂點:4個
過兩對邊歪斜線 兩側各兩個:3個

TOP

回復 1# jmath2021 的帖子

參考 cefepime 老師的說明
https://math.pro/db/thread-2352-1-1.html

TOP

是一般的四面體
多謝

TOP

發新話題