36 1234
發新話題
打印

104板橋高中

推到噗浪
推到臉書

104板橋高中

如檔

附件

104板橋高中.pdf (329.34 KB)

2015-5-24 08:20, 下載次數: 5734

TOP

為什麼第一部分的填充2我一直算出162/25....

TOP

回復 2# jkliopnm 的帖子

當 A(3,0),B(0,4) 時,△OAB 有最小周長 12,此時 △OAB = 6

TOP

想請教3.7.9.13.15
謝謝版上的老師們。

TOP

回復 4# EZWrookie 的帖子

(3) 找交點,找分角線方向

(9) 由 \( a>0 \) 知函數 \( f(x) = ax^2+bx+c \) 之圖形為開口向上的拋物線

又 \( f(x) = 0 \) 之兩根 \( \alpha, \beta \),故 \( f(-1) \geq 0, f(0) \leq 0, f(1) \leq 0, f(2) \geq 0 \)。

故 \( a,b \) 滿足  \( f(-1) \geq 0, f(0) \leq 0, f(1) \leq 0, f(2) \geq 0 \) 及 \( a\geq2 \), \( 2\geq b \geq -8 \)

以 \( c = 4 -2a -b \) 替換,可得一線性規劃問題(變數為 \( a,b \) ),以頂點法可找到最小值

[ 本帖最後由 tsusy 於 2015-5-25 06:42 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

第3題

如檔案

附件

3.png (17.79 KB)

2015-5-24 13:43

3.png

TOP

第13題

如圖檔

附件

13.png (16.05 KB)

2015-5-24 14:10

13.png

TOP

第8,10,11題

第8,10,11題 如圖檔

附件

8+10+11.png (22.43 KB)

2015-5-24 16:03

8+10+11.png

TOP

回復 3# thepiano 的帖子

請問第二題詳細算式!謝謝!

TOP

回復 10# jyi 的帖子

第2題
作PC垂直OA於C,PD垂直OB於D
令\(\angle BAO=\theta \)
\(\begin{align}
  & PC=\frac{12}{5},PD=\frac{6}{5} \\
& AC+AP=\frac{12}{5}\times \left( \frac{1}{\tan \theta }+\frac{1}{\sin \theta } \right) \\
& BD+BP=\frac{6}{5}\times \left( \tan \theta +\frac{1}{\cos \theta } \right) \\
\end{align}\)
周長\(=\frac{12}{5}\times \left( \frac{1}{\tan \theta }+\frac{1}{\sin \theta } \right)+\frac{6}{5}\times \left( \tan \theta +\frac{1}{\cos \theta } \right)+\frac{18}{5}\)
令\(\tan \frac{\theta }{2}=t\ \left( 0<t<1 \right)\)
\(\begin{align}
  & \frac{12}{5}\times \left( \frac{1}{\tan \theta }+\frac{1}{\sin \theta } \right)+\frac{6}{5}\times \left( \tan \theta +\frac{1}{\cos \theta } \right)+\frac{18}{5} \\
& =\frac{12}{5}\times \left( \frac{1-{{t}^{2}}}{2t}+\frac{1+{{t}^{2}}}{2t} \right)+\frac{6}{5}\times \left( \frac{2t}{1-{{t}^{2}}}+\frac{1+{{t}^{2}}}{1-{{t}^{2}}} \right)+\frac{18}{5} \\
& =\frac{12}{5}\times \left( 1+\frac{1-t}{t} \right)+\frac{6}{5}\times \left( 1+\frac{2t}{1-t} \right)+\frac{18}{5} \\
& =\frac{12}{5}\left( \frac{1-t}{t}+\frac{t}{1-t} \right)+\frac{36}{5} \\
& \ge \frac{24}{5}+\frac{36}{5} \\
& =12 \\
\end{align}\)
等號成立於\(t=\frac{1}{2}\)
此時\(OA=3,OB=4,\Delta OAB=6\)

TOP

 36 1234
發新話題