回復 1# 新手老師 的帖子
計算第 4 題
\(\Delta ABC\)中,\(\overline{AB}=20\),\(M\)為\(\overline{AB}\)中點,\(\Delta ABC\)的內切圓三等分\(\overline{CM}\),求\(\Delta ABC\)面積。
[解答]
\(\begin{align}
& {{\overline{MD}}^{2}}=\overline{MN}\times \overline{MG}=\overline{CG}\times \overline{CN}={{\overline{CF}}^{2}} \\
& \overline{MD}=\overline{CF}=\overline{CE} \\
& \overline{BC}=\overline{BM}=10 \\
\end{align}\)
令\(\overline{CF}=x\),則\(\overline{AF}=\overline{AD}=20-\left( 10-x \right)=x+10,\overline{CG}=\frac{1}{\sqrt{2}}x,\overline{CM}=\frac{3}{\sqrt{2}}x\)
\(\begin{align}
& {{\overline{AC}}^{2}}+{{\overline{BC}}^{2}}=2{{\overline{CM}}^{2}}+2{{\overline{AM}}^{2}} \\
& {{\left( 2x+10 \right)}^{2}}+{{10}^{2}}=2{{\left( \frac{3}{\sqrt{2}}x \right)}^{2}}+2\times {{10}^{2}} \\
& x=8 \\
& \overline{AC}=26 \\
& \Delta ABC=24\sqrt{14} \\
\end{align}\)
107.4.23補充
\(\Delta ABC\)中,\(\overline{AB}=10\),\(M\)為\(\overline{AB}\)中點,\(\Delta ABC\)內切圓恰將線段\(\overline{CM}\)三等份,試求\(\Delta ABC\)面積=
。
107中科實中國中部,
https://math.pro/db/thread-2943-1-1.html