有錯或其它解法還請不吝指教...我有2題不會,還請神人下凡指點迷津... (第4,15題)
1.
\( f(x,y)=3^x+3^y=3^x+3^{1-x} \ge 2 \cdot \sqrt{3^x \cdot 3^{1-x}}=2 \sqrt{3} \)
2.
\( \displaystyle \cases{sin \alpha+cos \alpha=-k>0 \cr sin \alpha \cdot cos \alpha =\frac{\sqrt{3}}{4}} \)⇒\( \displaystyle \cases{(sin \alpha+cos \alpha)^2=1+2 sin \alpha \cdot cos \alpha \cr (-k)^2=1+2 \cdot \frac{\sqrt{3}}{4}} \)⇒\( \displaystyle k=\pm \frac{\sqrt{3}+1}{2} \)(取負)
3.
法1:
\( \overline{AC} \)為\( \Delta ABD \)分角線,且\( A=120^{\circ} \)故\( \displaystyle \frac{1}{8}+\frac{1}{x}=\frac{1}{6} \),即\( x=24 \)
法2:
\( \displaystyle \overline{AC}=\frac{2 \cdot 8 \cdot x}{8+x}cos 60^{\circ}=6 \)⇒\( x=24 \)
公式:\( \Delta ABC \)中,\( \overline{AB}=c \),\( \overline{AC}=b \),\( \overline{AD} \)為\( ∠BAC \)的角平分線,\( ∠BAD=∠CAD=\theta \),則\( \displaystyle \overline{AD}=\frac{2bc}{b+c}cos \theta \)。
證明:
設\( \overline{AD}=x \)
\( \Delta ABC=\Delta BAD+\Delta CAD \)
\( \displaystyle \frac{1}{2} \cdot \overline{AB} \cdot \overline{AC} \cdot sin ∠BAC =\frac{1}{2} \cdot \overline{AB} \cdot \overline{AD} \cdot sin∠BAD+\frac{1}{2} \cdot \overline{AC}\cdot \overline{AD} \cdot sin ∠CAD \)
\( \displaystyle \frac{1}{2} \cdot b \cdot c \cdot sin 2\theta=\frac{1}{2} \cdot c \cdot x \cdot sin \theta+\frac{1}{2} \cdot b \cdot x \cdot sin \theta \)
\( bc \cdot 2 sin \theta cos \theta=x \cdot sin \theta(b+c) \)
\( 2 bc \cdot cos \theta=(b+c)x \)
\( \displaystyle x=\frac{2bc}{b+c}cos \theta \)
4.
\( \cases{log A=2+\alpha \cr log B=2+3 \alpha} \)⇒\( 3 \cdot log A-log B=4 \)⇒\( A^3=B \times 2^4 \times 5^4 \)
令\( B=2^2 \cdot 5^2 \cdot k^3 \)因為\( 100<B=2^2 \cdot 5^2 \cdot k^3<1000 \),所以\( 1<k^3<10 \)⇒\( k=2 \)即\( B=800 \),\( A=200 \)
5.
\( a_5=C_5^5+C_5^6+\ldots+C_5^n=C_6^{n+1} \),\( a_4=C_4^4+C_4^5+\ldots+C_4^n=C_5^{n+1} \),\( a_3=C_3^3+C_3^4+\ldots+C_3^n=C_4^{n+1} \)
⇒\( \displaystyle \frac{(n+1)!}{6!(n-5)!}=\frac{(n+1)!}{5!(n-4)!}+\frac{(n+1)!}{4!(n-3)!} \)⇒\( \displaystyle \frac{1}{6 \cdot 5}=\frac{1}{5 \cdot (n-4)}+\frac{1}{(n-3)(n-4)} \)⇒\( n=0 or 13 \)
6.
\( \displaystyle \overrightarrow{AG}=\frac{1}{3} \overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{1}{3r}\overrightarrow{AP}+\frac{1}{3s}\overrightarrow{AQ} \) 因為P,G,Q共線⇒\( \displaystyle \frac{1}{3r}+\frac{1}{3s}=1 \)
科西不等式\( \displaystyle (9r+4s)(\frac{1}{3r}+\frac{1}{3s}) \ge ( \sqrt{3}+\frac{2}{\sqrt{3}})^2=\frac{25}{3} \)
7.
\( z^6-1=(z+1)(z^5-z^4+z^3-z^2+z-1) \)
求\( \displaystyle =5 \times (正 \Delta)=5 \cdot ( \frac{\sqrt{3}}{4} \cdot 1^2 )=\frac{5 \sqrt{3}}{4} \)
8.
由斜率可知\( \overline{P_3 P_4}=10 \),求\( \displaystyle S=\frac{a}{1-r}=\frac{(60+20)}{1-\frac{1}{6}}=96 \)
10.
\( \displaystyle \matrix{捷 車 機 \cr \left[ \matrix{\frac{7}{10} & \frac{2}{10} & \frac{1}{10} \cr \frac{1}{10} & \frac{5}{10} & 0 \cr \frac{2}{10} & \frac{3}{10} & \frac{9}{10}} \right] } \cdot \left[ \matrix{x \cr y \cr z} \right]=\left[ \matrix{x \cr y \cr z} \right] \)⇒\( \displaystyle \cases{\frac{7}{10}x+\frac{2}{10}y+\frac{1}{10}z=x \cr \frac{1}{10}x+\frac{5}{10}y=y} \)⇒\( x:y:z=5:1:13 \)⇒求\( \displaystyle z=\frac{13}{5+1+13}=\frac{13}{19} \)
11.
易知拋物線過\( A(5,5 \sqrt{3}) \),\( B(25,15 \sqrt{3}) \)
令拋物線\( \Gamma \):\( x=ay^2+k \)⇒\( \cases{5=75a+k \cr 25=675a+k} \)解得\( \displaystyle a=\frac{1}{30} \),\( \displaystyle k=-\frac{75}{30} \)
⇒拋物線\( \Gamma \):\( \displaystyle x=\frac{1}{30}y^2-\frac{75}{30} \)
13.
(i)當\( \displaystyle x=\frac{1}{2} \),\( a_2 x^2=a_1x \)⇒\( \displaystyle a_2 (\frac{1}{2}=a_1) \),所以\( a_2=2 \)
(ii)當\( \displaystyle x=\frac{1}{3} \),\( a_3 x^3=a_2 x^2 \)⇒\( \displaystyle a_3 (\frac{1}{3})=a_2 \),所以\( a_3=2 \cdot 3 \)
(iii)當\( \displaystyle x=\frac{1}{4} \),\( a_4 x^4=a_3 x^3 \)⇒\( a_4 (\frac{1}{4})=a_3 \),所以\( a_4=2 \cdot 3 \cdot 4 \)
類推可知\( a_n=n! \)
14.
\( \displaystyle cos 60^{\circ}=\frac{(10-x)^2+x^2-6^2}{2 \cdot (10-x) \cdot x}=\frac{1}{2} \),可得\( \displaystyle x=5 \pm \sqrt{\frac{11}{3}} \)
⇒\( \displaystyle \Delta F_1 PF_2=\frac{1}{2}(5+\sqrt{\frac{11}{3}}) \cdot (5-\sqrt{\frac{11}{3}}) \cdot sin 60^{\circ}=\frac{16}{3} \sqrt{3} \)
16.
\( \displaystyle y=\sqrt{4-\frac{4}{9}x^2} \) ⇒ \( \displaystyle \frac{x^2}{9}+\frac{y^2}{4}=1 \)
所求=直線\( \displaystyle y=\frac{2}{3}x+2 \)與上橢圓\( \displaystyle \frac{x^2}{9}+\frac{y^2}{4}=1 \)所夾面積\( \displaystyle =\frac{1}{2} \cdot 4 \cdot 3=6 \)
[
本帖最後由 bugmens 於 2014-8-2 08:58 AM 編輯 ]