引用:
原帖由 nathan 於 2011-6-21 06:00 PM 發表
可以給點提示嗎??
我用正弦定理 求出\(\overline{CD}\) 與\(\overline{BC}\)的關係
但是無法證明
提供兩個代數方法來處理
法1:
假設AC=x,CD=y,CB=z ,BD=a,AD=b (事實上,a=b)
由面積公式可得四邊形ADBC面積=(1/2)*x*y*sin(45度)+(1/2)*y*z*sin(45度)=(1/4)*2^0.5*y*(x+z)----------------(1)
在三角形ACD中,由餘弦定理得b^2=x^2+y^2-2xy*cos(45度)=x^2+y^2-2^0.5*xy-------------(2)
在三角形CDB中,由餘弦定理得a^2=y^2+z^2-2yz*cos(45度)=y^2+z^2-2^0.5*yz-------------(3)
(2)+(3)得b^2+a^2=x^2+2*y^2+z^2-2^0.5*y(x+z) 化簡得 2y^2=2^0.5*y(x+z) (因為b^2+a^2=x^2+z^2)
所以 x+z =2^0.5*y-------------(4)
將(4)代入(1)可得所求=(1/2)*y^2=(1/2)*CD^2
[
本帖最後由 Ellipse 於 2013-2-12 10:08 PM 編輯 ]