3.
已知方程式\(x^5-x^4-x^3-x^2-x-3=0\)的五個根分別為 \(a\)、\(b\)、\(c\)、\(d\)、\(e\),求\(a^5+b^5+c^5+d^5+e^5\)的值為。
[速解法]
令\(f(x)=x^5-x^4-x^3-x^2-x-3\),\(f'(x)=5x^4-4x^3-3x^2-2x-1\)
用長除法算\(\displaystyle \frac{f'(x)}{f(x)}\)
數學傳播第七卷第四期,林文東,一元n次方程式根的同次冪之和的求法
https://math.pro/db/viewthread.php?tid=680&page=2#pid2434可下載文章
4.
在1781 年,日本藤田貞資於《精要算法》中提出所謂「蟲蝕算」這種填字遊戲。顧名思義,蟲蝕算遊戲就是將算式中打□被蟲損傷的地方,根據算術或代數推理手段恢復原來的數字使等式成立。下圖是一道稱為〈一個8〉的蟲蝕算遊戲:
試問:這道遊戲的最後四個數字為
。
(108新北市高中聯招,
https://math.pro/db/viewthread.php?tid=3133&page=6#pid19979)
設\(p,q\)為實數使得\(x^3+3x^2+px-q=0\)的三根成等差數列,且同時使得\(x^3+(2-p)x^2-(q+3)x-8=0\)的三根成等比數列,則數對\((p,q)\)為
。
(108新北市高中聯招,
https://math.pro/db/viewthread.php?tid=3133&page=1#pid19889)
6.
設\( \displaystyle p=\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1^2+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1^2+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1^2+\frac{1}{2019^2}+\frac{1}{2020^2}} \),則與\(p\)最接近之正整數為
。
[提示]
看題目寫答案\(\displaystyle 2020-\frac{1}{2020}\),最接近整數2020
(我的教甄準備之路 裂項相消,
https://math.pro/db/viewthread.php?tid=661&page=2#pid1678)
10.
已知空間中有一個四面體的四個頂點分別為\(A(0,0,1),B(2,4,0),C(0,0,0),D(4,2,0)\),平面\(E\)通過\(A\)點與\(\overline{BD}\)中點且與\(\overline{BC}\)有交點。若平面\(E\)將此四面體分成兩塊,其中一塊的體積為原四面體的\(\displaystyle \frac{1}{3}\),求\(E\)的方程式為
。
(98高中數學能力競賽 台中區複試試題,weiye解題
https://math.pro/db/viewthread.php?tid=911&page=1#pid1943)
(99全國高中聯招,
https://math.pro/db/thread-978-1-1.html)