1.
設\(|\;z|\;=1\)且\(z^{11}+z-1=0\),試求複數\(z\)之值。
計算證明題
1.
令\(\displaystyle \omega=cos\frac{2\pi}{111}+i sin\frac{2\pi}{111}\),其中\(i=\sqrt{-1}\)。試求\(\displaystyle \sum_{k=1}^{110}\frac{\omega^{2k}}{\omega^k-1}\)的值。
[提示]
這裡考計算證明當然要會寫全部過程,若只問答案有現成公式
公式\(\displaystyle \sum_{k=1}^{110}\frac{\omega^{2k}}{\omega^k-1}=\frac{1}{2}(110-2)=54\)
3.
已知\(n\)個相異的正奇數與\(m\)個相異的正偶數的和為1000,求\(6n+8m\)的最大值。
https://math.pro/db/viewthread.php?tid=1327&page=1#pid5182
7.
設\(\displaystyle -\frac{\pi}{4}\le \theta \le \frac{\pi}{4}\),若下列\(x,y,z\)的方程組
\(\cases{(\sqrt{2}(sin\theta+cos\theta)-2)x-3y-3z=0 \cr 3x+y-z=0 \cr 13x+7y-\sqrt{2}(sin\theta+cos\theta)z=0}\)
有異於\(x=y=z=0\)之解,求\(\theta\)的值=
設有一奇整數n及一角θ使得聯立方程式
\( \cases{3^n y+(sin 2 \theta)^n z=0 \cr
(1+sec \theta)^n x+z=0 \cr
-x+(1+csc \theta)^n y=0} \)
中的x,y與z不只一組解,試求\( sin \theta+cos \theta+tan \theta+cot \theta+sec \theta+csc \theta \)之值。
(98台灣師大大學甄選入學指定項目甄試試題)
(99基隆高中,
https://math.pro/db/viewthread.php?tid=972&page=1#pid2248)