引用:
原帖由 tsusy 於 2021-6-13 21:47 發表
第六題,餘弦定理的部分相同
\(\frac{a}{b} + \frac{b}{a} = 4\cos C\) \( \Rightarrow \frac{a}{b} + \frac{b}{a} = 2 \cdot ({a^2} + {b^2} - {c^2})\) \( \Rightarrow 2{c^2} = {a^2} + {b^2}\) \( \Rightarrow \co ...
寸絲前面有一個筆誤: a/b +b/a =2(a²+b² -c² )/
ab
印象中, 這題是由民國95年某校教甄題去改一下外觀的
另解:
這題本來想說故意"不用餘弦定理",但真的還不太行 :需用到a² +b² =2c² 這條件-----------(1)
由正弦定理可知 a/b+b/a=4cosC => sinA/sinB +sinB/sinA = (sin² A +sin² B)/ (sinAsinB) =4cosC-------------(2)
所求=tanC(cotA+cotB)=(sinC/cosC)*(sinAcosB+cosAsinB)/(sinAsinB)=(sinC/cosC) *sin(A+B)/(sinAsinB)
=(sinC/cosC) *sinC/(sinAsinB) (將(2)代入)
=4sin² C/(sin² A+sin² B)= 4c² /(a² +b² ) (by 正弦定理)
=4c²/2c²=2 (by (1))
當然用寸絲的方式會比較快,但考生也要多去思考是否可"一題多解"
這樣才能增強數學解題能力 . 在此先拋磚引玉一下~