回復 34# math1 的帖子
填充 6. 認真討論一下各種情形
單看一色球,球數分布在兩袋的情形有 (5,5), (3,7), (1,9), (2,8), (4,6) 及兩數交換共9種情形。
(1) 三色皆各 5 個,有1種放法 \({5^3} = {5^3}\)。
(2) 恰一色 5個,有 \(3 \times 8 = 24\) ( \( 5x(10-x) = 5(10-x)x \)
接下就是檢查沒有其它可能,注意到如果有 (x,10-x), (10-x,x),那第三色僅能 (5,5) 已在上方數過。再利用質因數的特性,就可以說明以下,不會發生滿足題意的乘積相等。
(3) 沒有任何顏色 5個,
某色球有 7 個的話,另一袋也必某色有 7 個,就會是 (2) 的情況。
故(3)不會有某色球分布為 (3,7) 或 (7,3)。
某色球有 9 個的話,另一袋顏色球數只能用 \( 6 \times 6 \) 配出 9 的倍數(不能用 9,否則就是(2)的情況)
餘下 (2,8), (4,6), (8,2), (6,4),同樣地論證也可以得到無法搭配出乘積相等。
故所求為 \(1 + 24 = 25\)