回復 34# math1 的帖子
填充 2. 數字醜、算式長...很難算對的感覺
\( AC \) 的一個方向向量 \(\mathop u\limits^ \rightharpoonup = (1,2, - 2)\)
\( GE \) 的一個方向向量 \(\mathop v\limits^ \rightharpoonup = ( - 3,4,1)\)
\(\mathop u\limits^ \rightharpoonup \times \mathop v\limits^ \rightharpoonup = (10,5,10) = 5(2,1,2)\)
平面 \( ABCD \) 的一個法向 \(\mathop n\limits^ \rightharpoonup = (2,1,2)\)
平面 \( ABCD \) 的方程式 \(2x + y + 2z = - 7\),
直線 \( GE \) 上,一點 \(I(2, - 2,0)\),平面 \( EFGH \) 的方程式 \(2x + y + 2z = 2\)
令點 H 的坐標為 \(H( - 4 + 2t, - 1 + t,1 + 2t)\) 代入平面 \( EFGH \) 的方程式,可得 \(t = 1\), \(H( - 2,0,3)\), H 到平面 \( ABCD \) 的距離為 3。
令點 J 為 \(\overline {HF} \) 的中點,則 J 的坐標可令作 \(J( - 2 + s,2s,3 - 2s)\) ( ∵\( HJ//AC \) )
將 J 代入 \( GE \) 的比例式,解得\(s = 1\)。
\(\Delta GJH\) 中,\(\overline {GJ} = \overline {JH} \),\(\Delta GJH = \frac{1}{2}|\mathop {GJ}\limits^ \rightharpoonup \times \mathop {HJ}\limits^ \rightharpoonup | = \frac{1}{2} {\overline {GJ} \cdot \overline {JH} } \cdot \frac{ |\mathop u\limits^ \rightharpoonup \times \mathop v\limits^ \rightharpoonup |}{{\left| {\mathop u\limits^ \rightharpoonup } \right| \cdot \left| {\mathop v\limits^ \rightharpoonup } \right|}} = \frac{{45\sqrt {26} }}{{52}}\)。
長方形 \( EFGH \) 面積 \( = 4 \cdot \Delta GJH = \frac{{45\sqrt {26} }}{{13}}\)。
所求長方體體積 \( = \frac{{45\sqrt {26} }}{{13}} \times 3 = \frac{{135\sqrt {26} }}{{13}}\)。
[ 本帖最後由 tsusy 於 2021-4-27 19:30 編輯 ]